
ADAREORG

User Guide

Version

3.05

Treehouse Software, Inc.

A Product of CCA Software Pty Ltd

Copyright Notice

Copyright 1996 - 2019 CCA Software Pty Ltd.

All Rights Reserved.

Trademark Acknowledgments

ADABAS and NATURAL are trademarks of SOFTWARE AG
of Germany and North America

MVS, MVS/XA, MVS/ESA and JES are products of IBM Corporation, USA.
MSP, MSP/AE and MSP/EX are products of Fujitsu, Japan.

Requirements for Confidentiality

This document contains trade secrets and proprietary information of CCA Software Pty.
Ltd. Reproduction and/or modification of this document without the prior written

approval of CCA Software Pty. Ltd. is prohibited. Use of this document is limited to
licensed users of ADAREORG or those with specific written permission of CCA Software

Pty. Ltd.

THE SOFTWARE WHICH IS DESCRIBED IN THIS DOCUMENT IS SUBJECT TO
LIMITATIONS ON USE, RELEASE, DISCLOSURE AND DUPLICATION, AND

TO REQUIREMENTS FOR CONFIDENTIALITY, PROTECTION AND SECURITY
WHICH ARE SET OUT IN THE SOFTWARE LICENSE AND MAINTENANCE

AGREEMENTS.

Treehouse Software, Inc.
2605 Nicholson Road, Suite 1230
Sewickley, PA 15143 USA
Phone: 724.759.7070
Fax: 724.759.7067
e-mail: tsi@treehouse.com
http://www.treehouse.com

Table of Contents

INTRODUCTION 1

OVERVIEW .. 1
SCOPE ... 1
EFFICIENCY ... 2
ADABAS VERSION COMPATIBILITY 2
ADAREORG VERSION 2

PROCESSING OVERVIEW 3

INPUT .. 3
CONTROL AND PROCESSING PARAMETERS

 ... 3
EXECUTION MODES 3

OPERATIONS .. 7

OPERATION JCL 7
ADACMP EXIT MODE 7
STAND-ALONE MODE 7
DESCRIPTION OF DDNAMES 8
OUTPUT .. 11

Output files .. 11
End of processing messages 12

PARAMETERS 13

FILE DEFINITIONS 13
General Syntax Rules 13
USERISN ... 14
Generating Input File Cards 15

CONTROL & PROCESSING PARAMETERS 16
General Syntax Rules 16
Control Parameters 17
Processing Parameters 19

FIELD FORMAT CONVERSIONS 25

LENGTH CONVERSION 25
DATA TYPE CONVERSION 25

From ALPHA (type A) 26
From UNPACKED (type U) 26
From BINARY (type B) 26
From FULLWORD (type F) 26
From PACKED (type P) 26
From Floating Point (type G) 26
Long Alphanumeric fields (type LA) . 27
Wide Alphanumeric fields (type W) .. 27

ERROR MESSAGES 30

FAULT DIAGNOSIS 30
ADABAS MESSAGES 31
SYSTEM ABENDS 31
USER ABENDS 31
PROCESSING MESSAGES 33

Codeword errors 33

DDPARM errors 34

USER EXITS .. 37

PROCESSING .. 37
USER EXIT 0 - INITIALIZATION 37
USER EXIT 1 - KEY MATCHING 37
USER EXIT 2 - SELECTION/ MODIFICATION

 .. 37
USER EXIT 3 - OUTPUT FORMAT. 38

INSTALLATION 39

RELEASE CONTENTS 39
Installation Procedure Overview 39
Procedure to Install ADAREORG for

MSP/EX - only 41
Install the Source Library 41
Install the Load Library 41

APPLY PRODUCT PROTECTION CODE 42
Contents of the Install library 43
Load library 43

INDEX .. 45

P A G E 1

Introduction

Overview

The traditional methods of making all but simple changes to the physical structure
of established ADABAS databases are time consuming and cumbersome.
Responding to requirements from application developers is not quick and easy for
the DBA. Tuning opportunities that arise as experience is gained with new
applications, or as end-user loads change, tend to be deferred.

ADAREORG transforms this situation. ADAREORG is a utility that enables the
physical structure of a database to be changed with a minimum of effort and a
minimum of risk.

ADAREORG enables the DBA to offer a higher level of service, not only in
responding to the traditional sorts of requirements, but in going further. It is a
simple matter to create appropriate test databases. A proto-typing or evolutionary
approach to applications development may be easily supported; ADAREORG is
useful in adding external data to an ADABAS database, or selecting ADABAS data
for supply to a non-ADABAS system.

Scope

ADAREORG will accept one or two files as the data source. Where there are two,
the user specifies the field in each file that is to be the key, and the basis upon
which they should be joined. Input files may be:

• a compressed ADABAS file;

• a decompressed ADABAS file;

• a raw data file;

• a combination of any two of the above.

It is possible to create subsets of existing files by filtering input records based on
specific selection criteria. It is also possible to limit the size of the output file to a
specified maximum number of records. These features are useful in creating test
databases, limited in size and content.

Chapter

1

I N T R O D U C T I O N

P A G E 2

The power of ADAREORG extends below field level. For example, data in a
specified position in an input field may be written to a nominated position in an
output field. It is also possible to insert a constant in a specified position in an
output field.

ADAREORG also allows fields within a record to be completely re-ordered, so
that frequently accessed fields are placed at the beginning. This improves format
buffer translation time and packing density, while being transparent to NATURAL
programs. With the introduction of large record sizes and spanned records in
ADABAS the field placement is particularly important to reduce unnecessary
database I/O.

ADAREORG can perform data format conversions, including changes in length,
conversions between field types, moving fields into and out of periodic groups.
Without ADAREORG, such requirements are often serviced in a way that leaves
files full of confusing, defunct fields.

ADAREORG can produce a compressed, re-structured file from compressed input
files without the need for decompressed intermediate datasets. Decompression
and compression is performed on a record by record basis, all within a single step.
This eliminates the need for large amounts of temporary disk space.

Efficiency

ADAREORG offers improved efficiency through:

• decreased DBA effort ;

• reduced disk space usage;

• reduced processing time compared with one-off NATURAL programs -
due to ADAREORG’s efficient ASSEMBLER code, and it’s ability to
produce a compressed output file from compressed input files in a single
step.

The efficiency and convenience of ADAREORG enables the DBA to quickly and
easily change physical database structures as required.

ADABAS version compatibility

ADAREORG V3.05 supports ADABAS V6.x - 8.4.2. All ADABAS field types

are supported, with the exception of BLOBs which are only partially supported

(the references will be passed through).

ADAREORG Version

This manual is specific to ADAREORG Version 3.05 and subsequent fix levels.
The ADAREORG version number is printed on all ADAREORG Execution
Report page headers.

P A G E 3

Processing Overview

Input

Essential input to ADAREORG is one or two data source files - whether
compressed or decompressed ADABAS files, raw data or a mixture.

If an input file contains spanned records, then no second file may be specified,
and the spanned record file must be sorted in ISN sequence. This is most easily
done by adding SORTSEQ=ISN to the ADAULD parameters.

In addition, the following are required:

• ADACMP parameter cards describing the input records, (if using
decompressed data) - ADAREORG will use the FDT if present;

• ADACMP parameter cards describing the output records to be
produced. Except in the case of new fields, the same ADABAS 2-
character short names from the input records are automatically used in
the output records - thus providing a logical basis for the re-structure;

Control and processing parameters

Control parameters specify such things as whether or not input files are
compressed, and the execution mode. Processing parameters affect the content
of the output file.

Execution Modes

ADAREORG can be run in either of two modes: ADACMP Exit Mode, or Stand-
alone Mode.

1. ADACMP Exit mode is used when compressed output is required, i.e. for
typical database file reorganizations.

With EXIT mode, the main program being executed is the compression utility,
ADACMP. ADAREORG is specified to this utility as an exit routine to be
called to perform user processing. It should be noted that, if the run abends,
abend codes may have been issued either by ADARUN or by the compression
utility.

Chapter

2

P R O C E S S I N G O V E R V I E W

P A G E 4

In ADACMP Exit Mode no decompressed files are produced. Processing of
the input file is conducted on a record by record basis (in memory). Any
compressed input records are firstly decompressed by ADADEC, then
reorganized, and finally re-compressed by the ADACMP compression utility.
User Exits provide the facility for tailoring the output.

Figure 1: ADACMP exit mode - compressed output.

2. Stand-alone Mode is used whenever decompressed output files are required.
Possible examples include:

• a requirement to produce input data for a non-ADABAS system,
(such as a flat file ready for input to a relational database), or

• a need to submit a reorganized file to an existing verification
program which requires a decompressed ‘flat’ file.

P R O C E S S I N G O V E R V I E W

P A G E 5

Figure 2 - Stand-alone mode - decompressed output, suitable for input into
ADACMP or other processing programs.

P A G E 7

Operations

Operation JCL

Sample JCL is shown below for both execution modes of ADAREORG. This JCL
can also be found in members JCL and JCL1 of the release install JCL library.

ADACMP exit mode

//STEP01 EXEC PGM=ADARUN

//STEPLIB DD DSN= need access to ADABAS load library

//* and the ADAREORG program

//DDPRINTX DD SYSOUT=* documentation and error messages

//DDPRINT DD SYSOUT=* ADACMP messages

//DDADA01 DD DSN= input data, file 1

//DDADA02 DD DSN= optional second input file, file 2

//DDWAN01 DD DSN= ADACMP description of DDADA01

//DDWAN02 DD DSN= ADACMP description of DDADA02

//DDWAN03 DD DSN= ADACMP description of output file

//DDPARM DD DSN= ADAREORG parameters

//DDCARD DD DSN= ADARUN parameters

//DDKARTE DD DSN= usually same as DDWAN03

//DDEBAND DD DUMMY for ADACMP - must be dummy

//DDAUSBA DD DSN= compressed output

//DDRUCK DD DSN= ADACMP messages

//DDFEHL DD DSN= ADACMP rejected records

//DDFAILX DD DSN= ADADEC rejected records(optional)

//TZINFO DD DSN= ADABAS timezone database file

Stand-alone mode

//STEP01 EXEC PGM= ADAREORG

//STEPLIB DD DSN= need access to ADAREORG and the

//* ADABAS load library

//DDPRINTX DD SYSOUT=* documentation & error messages

//DDADA01 DD DSN= input data, file 1

//DDADA02 DD DSN= optional second input file 2

//DDADA03 DD DSN= decompressed output file

//DDWAN01 DD DSN= optional ADACMP description of DDADA01

//DDWAN02 DD DSN= optional ADACMP description of DDADA02

//DDWAN03 DD DSN= ADACMP description of output file

//DDPARM DD DSN= ADAREORG parameters

//DDFAILX DD DSN= ADADEC rejected records (optional)

//TZINFO DD DSN= ADABAS timezone database file

Chapter

3

O P E R A T I O N S

P A G E 8

Description of DDNAMES

DDNAME Usage Description

DDPRINT Mandatory
in exit
mode.

Required by ADACMP - not needed in
standalone mode. Normally assigned to
SYSOUT=*.

DDADA01 Mandatory The sole or first input file. Depending on the
type of file, the following considerations
apply:

1. If the input file is a compressed ADABAS
file which has been unloaded via ADAULD,
then "EXPAND 1" will be required as input
to DDPARM. It is also essential that a full
unload be taken (i.e. without the
MODE=SHORT option) so the unloaded file
can double as a backup of the ADABAS file.

2. If the input file is decompressed, it should
have been created via the ADACMP, run with
the DECOMPRESS parameter, using the
parameter RECFM=VB.

3. Alternatively, the file may contain raw data
(such as a sequential dataset with RECFM of
F, FB, V or VB and records of any length).
This data must be consistent with the
descriptions in DDWAN01. Note that an
ISN may or may not be needed in the first 4
bytes, and that 1-byte binary occurrence
counters must precede any PE and MU data,
unless MUPEX is also specified, in which case
2-byte binary counters should be used.

DDADA02 Optional If used, the nominated second input file will
be merged (according to the rules set out by
the parameters in DDPARM) to DDADA01
to produce the reorganized output file. Both
DDADA01 and DDADA02 must be ordered
on specified key fields. The output record
structure will be generated for records with
matching key values.

O P E R A T I O N S

P A G E 9

DDNAME Usage Description

If DDADA02 is compressed, then the
"EXPAND 2" parameter must be included as
input to DDPARM. (Note, however, that this
parameter should NOT be supplied unless
two input files are being used).

DDADA03

Conditional This file is produced only if ADAREORG is
run in stand-alone mode. The resulting
output is decompressed according to the
description is in DDWAN03. If DCB
information is not specified then it will default
to RECFM=VB and BLKSIZE=20000,
otherwise RECFM can be F, FB, V or VB and
the record length must be large enough to
accommodate the largest record built.

If "USERISN" is specified in DDWAN03,
the first 4 bytes of the record will contain the
ISN obtained from DDADA01 or
DDADA02, if available. If the "ISN"
parameter is specified in DDPARM, ISN's
will be generated internally by ADAREORG.
Repeating fields (MU) or groups (PE) will be
preceded by a 1-byte binary occurrence
counter, unless MUPEX is specified in
DDWAN03, in which case the counters will
be 2 bytes long rather than 1.

If a spanned record input file is used, then it
may become necessary to specify
HEADER=YES in DDWAN03, as spanned
records may well exceed the maximum
possible record length of the output file once
they have been decompressed.

Specifying HEADER=YES, will ensure that
the output records are segmented, in which
case, it should also be specified in
DDKARTE, if said records are later to be
compressed with ADACMP, or if
ADAREORG is run as an ADACMP exit.

O P E R A T I O N S

P A G E 1 0

DDNAME Usage Description

DDWAN01 Conditional Contains the ADACMP cards describing
DDADA01. Not needed when DDADA01 is
a compressed unloaded file (as ADAREORG
can derive the file description from the FDT
in the input).

It may consist of in-stream data, a sequential
file or a PDS member. A record length of 80
bytes is assumed.

DDWAN02 Conditional Required only if DDADA02 is present., and
subject to the same considerations as for
DDWAN01 above.

DDWAN03

Mandatory Contains ADACMP cards describing the
reorganized output file built in DDADA03
(or in DDAUSBA if running as an ADACMP
exit).

When running as an exit, DDWAN03 would
normally be the same as DDKARTE - in fact
both DD statements can point to the same
physical dataset. Note that this is not
mandatory, and occasionally it can be useful
to use slightly different field definitions,
provided that they are compatible with
ADACMP, e.g. U & A types.

DDPARM Optional This file contains ADAREORG control and
processing parameters. It may be in-stream
data, a sequential file or a PDS member.
Record length is 80 bytes.

DDCARD Conditional Must be present when running in exit mode
only (i.e. PGM=ADARUN in the JCL). This
card must contain:

ADARUN PROGRAM=ADACMP,UEX6=ADAREORG

DDKARTE Conditional ADACMP cards - needed in exit mode only.
Normally identical to DDWAN03.

DDEBAND Conditional Needed in exit mode only. Must be set to
DUMMY.

O P E R A T I O N S

P A G E 1 1

DDNAME Usage Description

DDAUSBA Conditional Needed in exit mode only. ADACMP will
generate it with RECFM=VB, LRECL,
BLKSIZE as appropriate for input to
ADALOD. This is the output file as
described in DDKARTE (and usually
DDWAN03). Typical values are
LRECL=9996 and BLKSIZE=10000.

DDDRUCK Conditional Needed in exit mode only. Contains
ADACMP messages. Usually specify as
SYSOUT=*.

DDFEHL

Conditional Needed in exit mode only. One record is
produced for each invalid record rejected by
ADACMP. See ADACMP documentation
for detailed explanation. The first few bytes
usually contain, among other things, the name
of the field in error.

DDPRINTX

Mandatory Normally assigned to SYSOUT=*. Contains
1 page of documentation, plus images of the
input in DDWAN01, DDWAN02,
DDWAN03 and DDPARM. Also contains
record counts, any error messages, and (in the
case of an abend during processing) a small
formatted dump.

DDFAILX Optional When CONTINUE (abbrev. CONT) is
specified in DDPARM, the file associated
with this DDNAME holds the records
rejected by ADADEC, i.e. the compressed
input records that failed decompression.

TZINFO Optional If the file contains fields with the TZ option,
then TZINFO is required. It refers to the
ADABAS timezone information file.

Output

Output files

The output file will usually be compressed by ADACMP, so its ADACMP
description should be complete. While it is possible to define contiguous fields as
one large field in the DDWAN03 description, there is not a great deal to be gained
from this - so the output description used by ADACMP found in DDKARTE
should be complete (including super- and sub-descriptor information).

O P E R A T I O N S

P A G E 1 2

End of processing messages

At the end of processing the following counts will be printed:

RECORDS WRITTEN :

RECORDS READ FROM ADA01 :

RECORDS READ FROM ADA02 :

REJECTED MATCHES :

Note: For the purposes of these messages, ADABAS records are counted (which
are not necessarily the same as physical records). Also, if input is compressed, the
1st "record" is an FDT and is not counted.

A failed ADAREORG job has no restart capability and must be rerun from the
beginning.

P A G E 1 3

Parameters

File Definitions

General Syntax Rules

Descriptions of the input file(s) and the output file must use standard ADACMP syntax as described in
the ADABAS utilities manuals. Either form, including ADACMP "FNDEF" syntax, may be used for
ADAREORG, but the correct cards for the compression utility concerned must be supplied to
DDKARTE.

ADACMP keywords recognized by ADAREORG are:

• FNDEF

• HEADER

• LOBVALUES

• MAXLOGRECLEN

• MUPECOUNT

• MUPEX

• TZ

• USERISN

If other keywords are supplied, they will be ignored.

Example:

ADACMP COMPRESS

ADACMP FNDEF='01,FF,2,A,MU'

Chapter

4

P A R A M E T E R S

P A G E 1 4

Super
Descriptors

Super/Sub/Phonetic-descriptor field definitions can be
present but are ignored by ADAREORG.

Comments Bytes 72-80 are ignored. Bytes 46 to 72 may be used for
comments depending on the rules for the relevant utility.

Level Numbers ADAREORG deals only with elementary fields, so whilst
group fields are ignored, levels within the group structure are
not. Note that this applies to ADAREORG parameter input
also.

PE/MU fields PE fields are accepted. Members of a PE must have levels
greater than 1. Note that PE or MU occurrence counts
should NOT be used on ADACMP cards. If a MU or PE is
specified, ADAREORG expects a 1 or 2 byte (depending on
whether or not MUPEX is specified) binary counter to appear
in the input record preceding the first occurrence. Note that
when a compressed input file is used, ADAREORG
determines for itself whether or not MUPEX is in effect. In
the output file it will generate the binary counter before the
variable number of occurrences of the multiple-valued field.

Note: As with standard ADACMP definitions PE's may not
be nested but may contain MU's.

Standard Length This must be present. ADAREORG does NOW support
undefined lengths, ie. 0.

Standard Format Currently this must be A,U,B,P,F,G, or W.

Definition
Options

The standard definition options for field descriptions may be
used e.g. NU, FI, DE, UQ, MU, PE, LA, LB. However, only
MU, PE, FI, LA, LB, NC, NN, TZ are used by ADAREORG.

If the file contains fields with the TZ option, then the
TZINFO DDCARD must also be supplied, and the TZ
parameter must be used to specify the appropriate timezone.

USERISN

If an input file is decompressed and contains an ISN (as would be the case if the data were created by
ADACMP DECOMPRESS using the ISN option or by CCA’s ADAREORG utility), its description
must include "USERISN".

If an input file is compressed, "USERISN" in its description will cause ADAREORG's internal
decompression routine to retain the input ISN's in the decompressed records.

P A R A M E T E R S

P A G E 1 5

If an ISN is to be produced in the output file then its description must contain "USERISN".

An ISN may be included in the output file in one of two ways:

ISN's may be carried through from the input file. Given that the input file description contains
"USERISN", the inclusion of "USERISN" in the output file description will cause ADAREORG to
retain the input ISN's in the output. Note that when the input file is compressed, and USERISN is
specified for the output file, ISNs are automatically carried through to the output.

If there are two input files, both with "USERISN" in their descriptions, ADAREORG will take the
ISN's from file 1. If file 1 has no ISN but file 2 is being used and does have an ISN, then this will be
used for the output. Carrying through ISN's from the input will be necessary where there are ISN-
based links in the database.

ISN's may be generated by ADAREORG as a result of the inclusion of "ISN" among the
ADAREORG parameters. ISN's generated in this way will overwrite any carried through from the
input. This ADAREORG option will seldom be required - if ISN's are not included in the output
file, then ADALOD will insert them.

Generating Input File Cards

ADACMP cards can be generated for existing files in the following ways:

➢ using PREDICT;

➢ using UTIL03 of the old batch data dictionary;

➢ from an ADABAS ADAREP report;

➢ from a program that issues LF commands to ADABAS and hence builds
ADACMP cards.

Note, however, that regardless of which method is used, it is very important that the cards are correct.
An example of the last method listed above is provided in member NATFDT in the installation source
library. NATFDT is easy to run and ensures that ADACMP cards generated reflect the current physical
structure of the file to be reorganized - however, field order is not always correct, which can cause
obvious problems. It is provided as a sample only.

If only a few fields from the input files are being selected by ADAREORG, then their ADACMP cards
may be abbreviated, as follows:

contiguous un-referenced fields may be defined as one large field;

fields occurring after the last referenced field may be omitted - although if a PE group has any of its
elements referenced, then its ADACMP description must be left intact.

If an input file is decompressed, one input field can be defined as two in order to generate output from
part of a field. This can also be achieved via ADAREORG's "LET" Parameter.

P A R A M E T E R S

P A G E 1 6

Note - If using an unloaded file as input to ADAREORG, it is not necessary to provide ADACMP
cards to describe the input file. The description will be obtained directly from the internal FDT located
in the first block of the dataset.

Control & Processing Parameters

ADAREORG's parameters are described here in two groups: control parameters which must be set to
ensure proper running of the job; and processing parameters which enable the DBA to accomplish
nearly any re-structuring task.

General Syntax Rules

The following rules are applicable to both types of parameters:

Maximum length of a parameter record is 72 bytes.

The parameter keyword (which may be abbreviated to 3 bytes) must start in position 1. Valid
keywords and their respective abbreviations include:

EXPAND EXP

ISN ISN

INC INC

KEY KEY

ACCEPT ACC

ACCEPTO ACCEPTO

REJECT REJ

REJECTA REJECTA

LET LET

DEFINE DEF

APPLY APP

MODE MODE

The syntactical delimiters '=' '<' '>' ',' '(' and ')' may be surrounded by blanks to improve
readability.

Comments can be appended to individual records by simply inserting a period before the comment
text. Any text following a period is ignored by ADAREORG.

Parameters cannot be continued onto another record.

The use of square brackets [] indicates that the enclosed items are optional.

Note: Keywords must be in upper case - lower case keywords are not recognized.

P A R A M E T E R S

P A G E 1 7

Control Parameters

Parameter Format/Explanation

CODE CODE=XXXXXXXXXXXXXXXXXXXX

The Codeword is at least 20 bytes long and is supplied by your
local distributor once you have advised them of your CPU ID. It
must be the first input parameter in DDPARM and must not be
in quotes. This parameter is mandatory.

EXPAND EXPAND {f}

Where f = 1 or 2.

This parameter must be submitted for each compressed input file,
ie. DDADA01, DDADA02 or both, signifying that it is to be
decompressed by ADAREORG via a call to ADADEC, eg.
"EXPAND 1".

INC INC nnnnnnnn

This parameter forces ADAREORG to print a progress message
on the joblog after processing every nnnnnnnn input records.
Records from both input files are counted in this total.

ISN ISN

This parameter will cause ADAREORG to generate an ISN
(Internal Sequence Number) equal to the sequence number of the
output record. E.g. the first output record will receive an ISN of
1 and will increment by 1 for each output record. The ISN is
stored in the first 4 bytes of each output record (or internal record
image if running as an ADACMP exit).

Note that this parameter has only one acceptable value ("ISN")
and must be used in conjunction with the "ADACMP USERISN"
parameter to be effective.

KEY KEY [f:]xx

P A R A M E T E R S

P A G E 1 8

This parameter must be present when there are two input files. It
specifies the basis upon which they are to be joined, where:

f = file number (optional for first file) - valid values are 1 or 2;

xx = ADABAS field name of key field.

Note that::

the input records must be sorted in key order;

duplicate key values within a file are permissible;

"unmatched" key values (i.e. those which occur in only one
file) are permissible, but will not generate any output;

each input record will only be used once to generate an output
record - thus a key duplicated in one file but unique in another
will only produce one output record (the first occurrence of
the duplicated record will be used);

if key matching is not sufficient for your requirements, it can
be overridden by using a user exit 1 - see below for details;

Variable fields can be used for key matching. However, results
can be unreliable; for example, if the same field is short in one
record but long in the next, it may result in non-selection of
expected records.

Examples: KEY 1:AA

 KEY 2:BB

 KEY AA

 KEY 2:BB

Both examples resolve identically: field AA from file 1 and field
BB from file 2 are to be taken as the key fields for joining the two
files.

P A R A M E T E R S

P A G E 1 9

Processing Parameters

Parameter Format /Explanation

ACCEPT The ACCEPT or ACC statement defines that input records from
file n will be accepted only if the value contained between bytes i
and j (inclusive) of field XX is equal to the specified constant.

ACCEPT [f:]XX(i,j) = kkkkkk

ACCEPT [f:]XX(i,j) < kkkkkk

ACCEPT [f:]XX(i,j) > kkkkkk

Where:

f = input file number, which can be either 1 or 2 (defaults to 1
if omitted);

XX = 2 character ADABAS field name;

i = byte offset of the start position within the field to be
examined (the first byte in the field is byte #1);

j = byte offset of the ending position within the field to be
examined;

kkkkkk = a string describing a constant.

A constant can be defined in one of the following three ways:

"EMPTY" - this means a null, blank or zero of appropriate
length;

"CHAR or CHA (a)", where "a" is a character string, including
blanks, which must not include any of the following delimiters:

 '=' '<' '>' ',' '(' ')'

"HEX (x)", where "x" is a hexadecimal string.

It is not necessary to explicitly give a constant a data type,
because ADAREORG will assume the constant is of the same
type as the ADABAS field to which it refers. ADAREORG
will also perform any necessary truncation or padding of the
constant automatically. Hence, the keywords CHAR and HEX
are provided only to allow any possible constant to be defined.
They should not be confused with ADABAS data types.

In the ACCEPT or ACC statement, note that:

P A R A M E T E R S

P A G E 2 0

if f is omitted, 1 is assumed;

if i & j are omitted, the whole of the specified field will be
compared with the specified constant;

it is not permitted to specify i or j without specifying both.

Examples:

ACCEPT AA = HEX(000F)

ACC 2:AB < CHA (M N)

Up to 20 ACCEPT, REJECT or APPLY cards in total may be
supplied. Note that ACCEPT does not unconditionally accept an
input record for processing, as it may be rejected by subsequent
ACCEPT or REJECT statements.

ACCEPTO The ACCEPTO ("accept-OR") statement differs from the
ACCEPT statement, in that when the condition on this card is
met, the record satisfying the condition is immediately accepted,
without consideration of following parameter cards. If the
condition specified on the card is not met, then the card is
IGNORED. This can have a "surprising" consequence, ie
suppose that the only card specified is ACCEPTO, and NONE
of the records in the file meet the condition on the card.
Nevertheless, all records will be accepted! This is because the
ACCEPTO card is ignored when its condition is not met, and the
DEFAULT action for ADAREORG is to accept all input. I.e. if
no selection parameter cards are specified at all, then all input is
accepted.
ACCEPTO can be used to accept a subset of records that would otherwise
be rejected, by placing it in a parameter deck before the REJECT cards.

REJECT The form of REJECT or REJ is identical to ACCEPT (as is the
logic) except that REJECT describes input records that should be
rejected if the comparison is true.

REJECT [f:]XX(i,j) = kkkkkk

REJECT [f:]XX(i,j) < kkkkkk

REJECT [f:]XX(i,j) > kkkkkk

NOTE: all supplied ACCEPT and REJECT statements are
logically ANDed together to form one definitive filter argument,
ie. a record must satisfy all specified criteria in order to be
accepted.

P A R A M E T E R S

P A G E 2 1

If the "KEY" parameter is used then ACCEPT/REJECT
processing is done after joining the two records.

Examples:

REJECT AA = HEX(0F)

REJ 2:AB = CHA(MN)

REJECTA The REJECTA ("reject-and") statement differs from the REJECT
statement, in that it will only reject those records for which the
conditions on all REJECTA cards are met. (Any REJECT will
reject a record immediately if its condition is met).

APPLY The APPLY or APP parameter is used to invoke a user exit
previously defined in a DEFINE statement.

APPLY UXna(xx)

Where:

"n" is either 2 or 3 (representing User Exit 2 or User Exit 3).
"a" is an option for User Exit 3, where a letter of the alphabet
may be used to define up to 27 exists;
 and "xx" is the ADABAS 2-character short name. There can be
many APPLY cards per user exit if needed. If UX2 or UX3 is
defined then 1 or more APPLY cards must be present for each
DEFINE.

LET The LET parameter allows a value to be assigned to an output
field, or part of an output field.

LET XX(i,j) = kkkkkk

or
LET XX(I,j) = [n:] YY (p,q)

Where:

XX and YY are 2-character ADABAS field names. XX is
defined in DDWAN03, YY is defined in DDWAN01 and/or
DDWAN02;

i,j = start and end byte offsets of the part of the output field
(XX) to be changed;

kkkkkk = a constant

P A R A M E T E R S

P A G E 2 2

p,q = start and end byte offsets of the input field (YY) to be
used as input to the change.

n = input file number, which can be either 1 or 2 (defaults to 1
if omitted);

It effectively says:

Write the defined string kkkkkk into output field XX between
bytes i & j inclusive (the string should be defined as for the
ACCEPT statement), or

Take the contents of bytes p through q of input field YY from
input file n, and write them into bytes i through j in output field
XX.

Note that::

The data written into the specified output position overlays any
data that would have otherwise been there. See next point.

If the field named in XX also occurs in the input file, the data
in the "unchanged" part of the output field XX (i.e. that part
which is outside of the specified i to j byte range)` will come
from field XX in the input file.

if n is omitted, 1 is assumed;

rules for i, j and p,q are as for ACCEPT, i.e. they must always
appear in pairs;

for a given output field a maximum of 2 LET statements are
allowed (except where XX is not also an input field name - in
which case 3 LET statements are allowed);

the rules for the constant are as for ACCEPT;

if XX is a variable length field, then (i,j) may not be specified.

Examples:

LET AC(3,5) = HEX(616161)

LET AC(3,5) = 2:BH(1,3)

LET AA = EMPTY

MODE The MODE parameter currently only takes a single sub-
parameter CONTINUE, which may be abbreviated to CONT.

P A R A M E T E R S

P A G E 2 3

 EG.

MODE CONT

When MODE CONT is used, a message will be output to
DDNAME DDFAILX for each failed input record. The number
of failed records will be included in the statistics at the end of the
ADAREORG run, and ADAREORG will finish with RC=4.
DDFAILX should not have any LRECL or BLKSIZE DCB
information defined. If MODE is not supplied, ADAREORG
will simply terminate as usual, upon receiving faulty input.

DEFINE The DEFINE or DEF parameter specifies a user exit to be used
during ADAREORG processing.

DEFINE UXna=xxxxxxxx

Where:

n has the value of 0, 1, 2, or 3;
a is as described in the APPLY statement previously;

xxxxxxxx is the name of a load module which is the user exit
loaded at the start of ADAREORG processing.

Each user exit can only be defined once and must be available to
ADAREORG in a STEPLIB. Sample user exits can be found in
the installation source library with names starting with the
characters UX.

The user exits are described in more detail in the appendix (see
User Exits).

LIMIT This parameter will cause processing to terminate as soon as a
pre-determined number of output records (n) have been
generated.

LIMIT n

If n is 0, ADAREORG will not attempt to open the input files.
This may be useful in order to validate parameters.

Example: LIMIT 9999

P A G E 2 5

Field Format Conversions

This chapter describes how ADAREORG processes field format and data type
conversions, and what results can be expected in each case.

Length Conversion

Alpha fields are moved progressively from left to right, starting with the leftmost
byte. The target field is truncated if the source is longer, or blank-filled if the
source is shorter.

Binary is moved similarly but is padded with null's.

Packed and unpacked data is moved progressively from right to left, starting with
the rightmost byte and truncated if necessary. Surplus bytes in the target field are
padded with null's (packed) or zeros (unpacked).

Data Type Conversion

Warning - Data type conversions should be undertaken with care, as some results
are non-reversible, eg. when truncation of data occurs. Always make a backup
copy of the input file prior to undertaking data type conversion.

Special Note - An explanation of the terminology used to describe data type
conversion results, is as follows:

 A "simple conversion" is defined as one where the field type is changed to
reflect the desired result, but the field contents remain essentially unaltered in
any other way. This can only be achieved in instances where the source format
and the target format are compatible, eg. "alpha-to-binary" or "packed to
unpacked".

 A "complex conversion" is defined as one where the source format and the
target format are incompatible and field contents may therefore be physically
altered in some way, eg. "alpha-to-numeric". Complex conversions can result
in truncation or other necessary modification to data.

Chapter

5

E R R O R M E S S A G E S

P A G E 2 6

From ALPHA (type A)

Alpha-to-binary is treated as a simple conversion.
Alpha-to-numeric (of any type) is a complex conversion. Any trailing blanks or
excess data beyond 32 characters is dropped, non-numeric characters are translated
to zeros, and the result is then treated as if it were unpacked.
Conversion to G type will accept a decimal point and a “+” or “-” sign in the input
data but exponents are not yet supported.

From UNPACKED (type U)

As UNPACKED fields are essentially compatible with any other type, all
conversions from UNPACKED are treated as simple conversions.
Note - up to 27 signed digits can be accommodated in a U type field.

From BINARY (type B)

Binary-to-alpha is treated as a simple conversion.
Binary-to-fullword is treated as a complex conversion. Only the rightmost 4 bytes
are retained (padded on the left with null's if necessary) and the resulting field type
changed to fullword.
Binary to any other form of numeric is straightforward after conversion to fullword
first.

From FULLWORD (type F)

Fullword to either packed or unpacked is treated as a simple conversion.
Fullword to binary or alpha is also treated as a simple conversion.

From PACKED (type P)

Packed-to-alpha is treated as a complex conversion.
Packed-to-binary is treated as a simple conversion.
Packed-to-unpacked or any fullword numeric form is treated as a simple
conversion.
Note - up to 27 digits of signed packed decimal (14 bytes) can be accommodated in
type P field.

From Floating Point (type G)

Floating point (type G) is now fully supported as a proper numeric type.

Conversion to A type will result in an alphanumeric string in engineering format,
e.g. +1.23456789E+10 . Conversion from a 4 byte G type field will produce a 15
byte A type field, from an 8 byte G type field will produce a 24 byte A type field.
Shorter A fields will result in right hand truncation and complete mangling of the
actual value, as the exponent will be (at least partially) missing.

When converting to UNPACKED, the number is truncated, not rounded.

Note - As floating point numbers can far exceed the capacity of packed decimal, it
is recommended to carefully check these conversions.

E R R O R M E S S A G E S

P A G E 2 7

Note – Conversion of any numeric type to an A type now results in the A type
field having a leading sign, either “+” or “-” as appropriate. This differs from type
U, where the sign is contained implicitly in the last byte.

Long Alphanumeric fields (type LA)

LA fields are specified by adding LA to the end of a normal field specification.
Input may only be from other alphanumeric fields (either long or short), and is
treated as a simple conversion.

Wide Alphanumeric fields (type W)

These are assumed to be Unicode fields, both as input to, and output from
conversions. “A” type input fields are assumed to contain EDCDIC data, when a
W field is the output. W to W however is a simple conversion, and no translation
takes place, hence the content need not necessarily be Unicode.
All W fields must have an even length, as must any subfield selections there from.
This is also true for comparison constants. This is because W fields use 2 bytes for
each character. Subfield selection must also start on an odd numbered byte within
the parent field.

Periodicity (PE/MU) Conversion

The following rules apply when manipulating Periodic fields (PE) and/or Multi-
valued fields (MU). Please take careful note of the following field processing
performed by ADAREORG, as data may be irretrievably truncated during
“periodicity” conversions.

Where a simple field is built (wholly or partly) from a PE or MU field, the first
occurrence will be used. If the source field is a MU in a PE, then the first MU
occurrence in the first PE group occurrence will be used.

If a PE group or MU field is built solely from simple fields and/or constants, it
will contain 1 occurrence.

Where a MU is a field built from a mixture of fields (including a PE or MU or
both) the periodicity of the constructed field will be that of the component field
with the lowest periodicity. Note that constants are not counted - they "come
along for the ride" on each occurrence but do not determine the output
periodicity - unless all component fields are constants.

A PE group built from a mixture of fields is handled in a similar way as the MU
field described above. The periodicity is acquired from the component field
with the lowest periodicity in the periodic group. For this purpose, the
periodicity of a MU field in a PE group is taken as the highest PE index - the
first MU occurrence will always be used for the data to be moved.

E R R O R M E S S A G E S

P A G E 2 8

If a MU within a PE is to be built from a simple PE element, it is assumed to
have a MU periodicity of 1 and the usual PE periodicity. If it is to be built from
a simple MU element, it is assumed to have a MU periodicity of 1 and the PE
periodicity is taken to be the MU periodicity. Note - when an MU within a PE
is to be built from an MU outside a PE, then the new MU has 1 occurrence in
each PE occurrence, and there will be as many PE occurrences as there are
occurrences of the MU outside the PE.

Note: "Periodicity" means the maximum index of a field, with the proviso that
the periodicity of a MU field in a PE group will be the maximum MU index
where the PE index is set to 1. That is, the periodicity of an MU within a PE is
taken to be that of the MU in the "first occurrence" of the PE field. This is then
used (with the periodicity of the other component fields) in determining the final
periodicity of the new field, according to the third point above, eg. a new MU
field is to be built from two different PE fields. In a given input record, the first
PE field may occur 10 times. The second PE field may only occur twice in the
same record. The new MU field will then have 2 occurrences, in which the first
2 occurrences of the first PE field are combined with the only 2 occurrences of
the second PE field. The remaining 8 occurrences of the first PE field are
ignored.

LOB Field Support

Actual LOB files (as opposed to LOB base files), are not modified by
ADAREORG. LB field references in LOB base files are passed through to the
output. Since SAG have implemented LOBs as dual files, deleting LOB base file
records in AR can result in the actual LOB file getting out of sync with the LOB
base file. Both AR and Adabas will still work, but the consequence is that the LOB
file will contain some objects that are no longer referred to anywhere. I.e. the LOB
file will be bloated.

Adabas will not allow pairing of an existing LOB file with a new LOB base file that
has a different number to the original LOB base file. The implication is that either
the same file number needs to be used for the new LOB base file as for the old
one, or the FCB needs to be modified to synchronize it with the LOB file (see
ADADBS MODFCB in the Adabas utilities manual for how to modify the FCB).

AR is not able to extract LOB values directly from the LOB file, as it has no access
to it. However it is possible to use ADACMP to decompress a LOB base file using
LOBVALUES=YES, then feed this decompressed file into ADAREORG (do not
use the EXPAND parameter in ADAREORG).

Note however that AR does not yet support input files decompressed with
HEADER=YES, so record lengths that would exceed the block size are not
supported, and some LB fields may very well be too long.

E R R O R M E S S A G E S

P A G E 2 9

System field support

System fields are normal fields where the content is supplied by Adabas itself rather
than programmatically. Hence minimal special support is required for these fields,
with the exception of TZ fields. These ae processed in he same way that ADACMP
would process them.

Logically deleted field support:-

Logically deleted fields do not show up in ADAREORG at all. It is as if they really
don't exist. The content is not accessible, and hence also not available in the
output.

E R R O R M E S S A G E S

P A G E 3 0

Error Messages

Fault Diagnosis

Although ADAREORG has proven to be very robust and reliable, it is wise to
check that decompressed output is as expected. This can be achieved by using the
"LIMIT" parameter to generate a test output file with a small number of records
(eg. LIM 99) and then browsing the output file with SPF or the DBAUDIT utility.
As in any data conversion exercise, it is also prudent to retain the original unloaded
file until satisfied that the reorganized file has been tested and validated.

Other checks include:

ADAREORG output report of ADACMP cards - are they consistent with the
input data?

are user ISN's needed?

ensure that PE and MU occurrence counts are NOT included in the ADACMP
cards. Such counts will be ignored by ADAREORG - but not by ADACMP -
so the data will probably be corrupted;

ensure that all PE's and MU's have the correct level numbers;

are output file block sizes, record lengths and space allocated large enough?

if possible, browse the output records for validity. If a suitable application exists
for the data, use it to check that the records (and fields) pass application edits;

ensure that the physical output file is as expected, in terms of the number of
records loaded and the space occupied by those records.

If invalid data is input to ADAREORG (eg. a compressed file is input without the
appropriate "EXPAND" parameter, or ADACMP cards are inconsistent with the
file structure), it will probably fail with an error S002. An incorrect file is very
unlikely to get through both ADAREORG and ADACMP without failing.

Chapter

6

E R R O R M E S S A G E S

P A G E 3 1

ADABAS Messages

ADARUN and ADACMP error messages are documented in the ADABAS
messages and codes manual. The dataset DDFEHL may contain details of any
records rejected by ADACMP.

Note that when ADAREORG is being run in EXIT mode, ADARUN and
ADACMP get initial control. This means that:

ADARUN cards must be correct and complete (as for any ADABAS utility run);

abend codes may have been issued by ADARUN.

ADAREORG produces summary output even when an error is found. If this
output is not evident after an abend, then it probably indicates that ADAREORG
did not get executed - and the abend is probably due to ADARUN (perhaps an
incorrect ADARUN parameter).

System ABENDS

System
Abend
Code

Description

S002 This may occur if invalid data is entered.

S806 This usually means that you have an incorrect STEPLIB in your JCL, e.g.
no library containing ADADEC, ADAREORG or another required
module.

S80A This may indicate that the region is too small.

User ABENDS

In the event of an abnormal termination, the WTO message "ADAREORG -
ABNORMAL TERMINATION" will be issued. All open files will be closed and
the job step will ABEND with one of the following codes:

E R R O R M E S S A G E S

P A G E 3 2

Abend
Code

Description

U001 failure attempting to print the first page of output (by module
REODOCP).

U002 error detected while processing DDWAN01. This will be accompanied
by other error messages. It could be caused by being unable to open the
file.

U003 error detected while processing DDWAN02. This will be accompanied
by other error messages.

U004 error detected while processing DDWAN03. This will be accompanied
by other error messages.

U005 error detected while processing DDPARM. This will be accompanied by
other error messages.

U006 failure to open DDADA01.

U007 failure to open DDADA02 (where DDWAN02 was present).

U008 this message code no longer used.

U009 failure while processing a DDADA01 record against the internal record
representation. This usually indicates that the actual input record layout
doesn't match the FDT that is provided (or contained in the file).

U010 failure while processing a DDADA02 record against the internal record
representation of data.

U011 failure to open DDADA03.

U012 failure while building a record for DDADA03.

U013 failure processing FDT for DDADA01. Indicates that the respective
FDT failed to correctly decompress.

U014 failure processing FDT for DDADA02. Indicates that the respective
FDT failed to correctly decompress.

U015 decompression of data failed on DDADA01. See also the WTO
message beginning with "ADADEC".

U016 decompression of data failed on DDADA02. See also the WTO
message beginning with "ADADEC".

E R R O R M E S S A G E S

P A G E 3 3

Abend
Code

Description

U045 ADAESI (ADABAS External Security Interface) has rejected
ADAREORG as not allowed to execute. Make the necessary definitions
to ADAESI, then rerun the job.

Processing Messages

The processing of DDWAN01 cards by ADAREORG results in a printout of
every card image. An incorrect card will be followed by the message:

*** ERROR IN ADACMP CARD

The processing of DDWAN03 cards by ADAREORG results in a printout of
every card image. An incorrect card will be followed by the message:

*** ERROR IN ADAWAN CARD

In some cases this may be followed by an additional explanation in parentheses on
the next line.

If an occurrence count is specified on a PE or MU, a warning message is printed as
follows:

*** WARNING - PE/MU COUNT FOUND

This is a potentially important warning and should be heeded! It alerts the user to
the fact that the count will be ignored by ADAREORG but not by ADACMP -
therefore if the actual number of occurrences exceeds that specified, the data will
be corrupted.

Codeword errors

These will be output in the joblog in the following format: (followed by a U000
abend message):

ADAREORG: XXXXXXXXXX..........

- where XXXXXXXXXX is one of the following:

E R R O R M E S S A G E S

P A G E 3 4

INVALID CODEWORD SUPPLIED

INCORRECT PARMCARD SUPPLIED

CODEWORD DOES NOT MATCH THIS PRODUCT

SOFTWARE LICENCE EXPIRES IN NN DAYS

SOFTWARE LICENCE HAS EXPIRED

SOFTWARE LICENCE IS NOT FOR THIS CPU

DDPARM errors

Processing of DDPARM input also results in a printout of every card image. An
incorrect card will be followed by the message:

*** LAST PARAM CARD IN ERROR - xxxxxxxx

- where xxxxxxxx will be one of the following:

LEFT BRACKET EXPECTED

COMMA EXPECTED

RIGHT BRACKET EXPECTED

EQUALS EXPECTED

BAD FIELD OR FUNCTION

NO FUNCTION DATA

EXTRANEOUS DATA

BAD FILE NUMBER

FIELD NOT FOUND

BAD START BYTE

BAD START/END BYTE

TOO MANY LETS FOR THIS FIELD

IMPROPER OPERATOR

ODD LENGTH HEX

BAD HEX

TOO MANY ACC/REJ CARDS

CARD END EXPECTED

BAD FIELD

DUPLICATE KEY

UX0=, 1=, 2=, 3= MODULE NAME EXPECTED (1-8 CHS)

USER EXIT UNLOADABLE

DUPLICATE DEFINE UX

UX2, 3 EXPECTED

BAD FIELD NAME

USER EXIT UNDEFINED

BAD FILE NUMBER

TOO MANY ACC/REJ/APP CARDS

The following message may appear after an ACCEPT or REJECT involving a PE
or MU field:

*** WARNING - ONLY 1ST OCCURRENCE USED

E R R O R M E S S A G E S

P A G E 3 5

At the end of DDPARM input, errors may be detected which pertain to input
card(s) other than the immediately preceding one. The following messages may
appear:

*** KEY CARD IN ERROR - xxxxxxxx

- where xxxxxxxx will be one of the following:

KEY MISSING OR REDUNDANT

KEY FIELD NOT FOUND

P A G E 3 7

User Exits

This section describes the user exit facilities provided by ADAREORG. All user
exits are field-level based (except for UX0 initialization) and - depending upon the
processing being done in the user exit - may add significantly to processing
resource requirements.

User exits must be defined to ADAREORG via the DEFINE statement described
in the Parameters chapter. There are four user exits available (named UX0 through
UX3). Each user exit can be defined only once and the load module must be
available to ADAREORG through a STEPLIB in the execution JCL. Note,
however, that User Exit 3 may specify 27 different exits (one for each letter of the
alphabet, and one with no letter - see page 21 for details.

Processing

Each user exit is given control in 24-bit mode with a standard parameter list and is
not required to be reentrant. The parameters are described in the supplied macro
REOMACRO, which can be found in the distributed source library together with
sample user exits.

User Exit 0 - Initialization

UX0 is the initialization exit. It can be used to establish special data areas for other
user exits by returning their addresses as a token to ADAREORG - which then
passes them to all other active user exits. UX0 will only be called once (and if it is
not supplied, the other user exits will receive a zero-valued token).

User Exit 1 - Key Matching

UX1 is the key-matching exit, and it is only appropriate if there are two input files.
It completely replaces the standard key-matching process if used. Depending on
the specific action of the User Exit, UX1 will likely be called approximately as
many times as there are records in one of the input files.

User Exit 2 - Selection/ Modification

UX2 is used to select and modify records according to supplied parameters. One
or more APPLY UX2 cards are used to tell ADAREORG which field values are to
be given to the exit at each call. UX2 will be called n*m times, where n is the
number of output records and m is the number of fields examined per record (ie.
the number of APPLY cards).

Chapter

7

U S E R E X I T S

P A G E 3 8

Each call to UX2 can either:

Accept the record unconditionally;

Reject the record unconditionally;

or

Allow ACCEPT/REJECT cards to determine the outcome.

Note - all fields in APPLY UX2 cards will be validated by UX2 before any
ACCEPT/REJECT cards are processed. As the FXDATA field can point to
variable fields as well, note that the first 1 or 2 bytes could be length fields
(depending on the field type). Another possible use for UX2 is to modify the value
in the input data field to affect the ultimate output value, although this can usually
be done in User Exit 3.

User Exit 3 - Output Format.

UX3 is used to modify the data content of output fields. One or more APPLY
UX3 cards will tell ADAREORG which field values are to be passed to the exit at
each call. UX3 will be called n*m times, where n is the number of output records
and m is the number of fields examined per record (i.e. the number of APPLY
UX3 cards supplied).

Each call to UX3 is made after the field value has been generated. UX3 then
inspects and reformats the output values if needed. It is not possible to change the
length of a field at this stage, but the data can be changed without limitation of any
kind - even to illegal values.

The parameter interface to this exit includes the field name, type and length -
enabling individual fields to be processed case by case.

Sample exits are provided in the source library (included on the distribution tape).
They include exits to:

replace blank by zero;

convert date to Natural D format;

convert date from Natural D format;

convert from EBCDIC to ASCII.

P A G E 3 9

Installation

Release Contents

The release consists of one compressed zip file:

▪ ARvxxxy-release.zip

Where: AR – internal code for ADAREORG, xxx is the version and y= is a
single character defining the fix level, so ARv300a is version 300 fix level a.

Note: For a given version of ADAREORG [vXXX] the JCL/Install library and
also the Users Guide will generally not change between specific fix levels.

Installation Procedure Overview

1. Save the email attachment and/or PC file to disk.
2. Unzip the supplied release libraries to a directory on a PC. There should be

six files in total:

• readme.txt; a text file containing last minute information on the release;

• ARv305-UsersGuide.pdf – The ADAREORG Users Guide;

• ARv305-Release-Notes.pdf – The ADAREORG Release Notes;

• ARv305IN.TRS – ADAREORG JCL, samples and Macro Library –
EBCDIC TERSED compressed – z/OS only;

• ARv305L.TRS – ADAREORG Load library – EBCDIC TERSED
compressed z/OS only – will not appear in MSP/EX release.

3. Allocate two temporary files on the mainframe for the upload files, details
in following section.

4. Load the two mainframe files (ARv305N, ARv305L) to the mainframe-
using FTP or whatever file transfer mechanism is used onsite – binary
mode only, without any translation as the files are already in EBCDIC
format.

5. Unpack the datasets using the information in the following sections, Note
this procedure will be different for MSP/EX and OS390 [z/OS] users.

Chapter

8

I N S T A L L A T I O N

P A G E 4 0

Procedure to Decompress the ADAREORG Install JCL and

Load Libraries – z/OS only

When decompressing the release zip file do not change file extensions on the PC
platform, this can lead to problems with CR/LF on binary files.

1. On the mainframe pre-allocate two datasets as follows:
‘&SYSUID..AR305N.TRS’ 2 cyls, ‘&SYSUID..AR305L.TRS’ 2 cyls, (both
INSTALL and LOAD datasets have a DCB=(LRECL=1024,
RECFM=FB, DSORG=PS). The BLKSIZE should be some sensible
multiple of 1024, such that the blocks fits on a track. Where &SYSUID. Is
just your userid on the mainframe.

2. Transfer the AR305N.TRS & AR305L.TRS files to the mainframe. Use a
binary FTP or file transfer, the files must be loaded without using ASCII
to EBCDIC translation or CR/LF and with the LRECL and BLKSIZE as
specified. If you pre-allocate the datasets as specified here above, then the
FTP server on the mainframe should just overwrite them, keeping the
attributes as specified. This considerably simplifies the FTP transfer, as the
only thing you need specify in the FTP client is “bin” to ensure a binary
transfer. This is also the reason why the mainframe files should be named
as specified.

3. On the mainframe run the following job, where the names of the INFILE
files should remain the same, but the names of the OUTFILE files may
be changed to meet site standards. TRSMAIN is available free from IBM.
Once the TERSE job has been run, and the INSTALL & LOAD libraries
exist, the INFILE files may be deleted.

4.
 //XXXXXTRS JOB

MSGLEVEL=(1,1),CLASS=A,MSGCLASS=X,NOTIFY=&SYSUID

//UNTERSE EXEC PGM=TRSMAIN,PARM='UNPACK'

//SYSPRINT DD SYSOUT=*

//INFILE DD DISP=SHR,DSN=&SYSUID..AR305.TERSED

//OUTFILE DD

DISP=(,CATLG),SPACE=(CYL,(2,2,45),RLSE),UNIT=SYSDA,

// DSN=&SYSUID..ADAREORG.V305.LOAD

//UNTERSE EXEC PGM=TRSMAIN,PARM='UNPACK'

//SYSPRINT DD SYSOUT=*

//INFILE DD DISP=SHR,DSN=&SYSUID..AS509SIN.TERSED

//OUTFILE DD

DISP=(,CATLG),SPACE=(CYL,(2,2,45),RLSE),UNIT=SYSDA,

// DSN=&SYSUID..ADAREOG.V305.INSTALL

The INSTALL dataset should contain approximately 30 members and the LOAD
library approximately 70 members.
At this point both the JCL and Load libraries will have been populated and the
members are ready for tailoring and testing. There is no longer a requirement to
run the build step to create the load modules under z/OS [the decompress
process has already created the load modules].

U S E R E X I T S

P A G E 4 1

Once the above JCL/Source and Load Libraries are transferred to the mainframe
and decompressed the installer will be in a position to undertake a series of test
runs of ADAREORG V3.05 to ensure correct installation.

xxxxxx.AR305.INSTALL - library contains JCL, example user-exits,

macros and ADASTRIP execution jobs.

xxxxxx.AR305.LOAD – binary executable ADASTRIP application

The supplied example JCL must be modified to conform to local site standards,
making appropriate changes to the dataset names in these members to match the
ones locally at the site, especially the JOBLIB/STEPLIB card to point to the V50
Load Library.

Procedure to Install ADAREORG for MSP/EX - only

On MSP/EX, prior to FTPing the release files to mainframe disk, undertake the
following steps:

 Install the Source Library

Unzip the file ASxxxyin.zip and upload the unzipped *.txt files into a previously
created mainframe dataset called [hlq].ARvxxx.INSTALL where [hlq] is your
high-level DSN qualifier.

Dataset Attributes:

Organization: PO
Record Format: FB
Record Length: 80
Blocksize: Multiple of 80

Install the Load Library

FTP the file ARxxxyob.jcl [where xxx is the supplied version and y is fix level, eg
v302] to the install library. The load library should have the following attributes:

Dataset Attributes:

Organization: PO
Record Format: U
Record Length: 0
Blocksize: Your choice, suggest same as ADABAS

I N S T A L L A T I O N

P A G E 4 2

This member contains JCL to produce the load library members and will need to
be modified to your library name. So, please modify both the SYSLIB and
SYSLMOD DD statements to point to this library. You will also need to review the
JOBCARD and modify it to meet your local site standards before running the job.

PLEASE NOTE THE JCL TO EXTRACT THE LOAD MODULES
CONTAINS A WARNING THAT YOU SHOULD READ BEFORE
EXECUTION.

NOTE: This file [ARxxxyob.jcl] is in EBCDIC form and needs to be loaded

as a BINARY file NOT as a .txt file, that is WITHOUT ASCII → EBCDIC
TRANSLATION. You should NOT, REPEAT NOT, use the ASCII CRLF
option for the upload of this file.

Once the above Source and Load Libraries are in position and populated you
should be in a position to run ADAREORG.

The install library contains example JCL, parameters and user exits. Please ensure
you modify these to conform to your local standards making appropriate changes
to the dataset names in these members to match the ones at your site, especially the
JOBLIB/STEPLIB card to point to the ADAREORG Load Library.

Apply Product Protection Code

ADAREORG requires a Product Protection Code, the codeword is at least 20-
bytes in length and will need to be supplied so that ADAREORG will run on your
system.

A code provided previously, which hasn’t expired, may still work with this new
release BUT it is recommend that all customers request new product codes from
their local support representative. Internal codeword processing has changed from
Version 305c so a new codeword will be required.

The code is supplied to ADAREORG as part of the ADAREORG DDPARM
parameter file as follows:

CODE=LLBLTNPHJJLHHHGGIHCHIQ

 OR

The code may be permanently zapped into the ADAREORG load modules, this
zap must be created by CCA and takes the place of the CODE parameter.

An example only, of this zap is supplied in the install dataset. In order to run
ADAREORG, you will either need a codeword or zap supplied by CCA.

U S E R E X I T S

P A G E 4 3

Attempting to apply the codeword zap to a previously zapped load module will fail,
to get around this simply comment out the VER’s OR apply the zap to a fresh
copy of the load module. The latter method is recommended, in case the new
codeword is shorter than the old one. It is recommended that all original install
libraries be backed up before applying any zaps.

Contents of the Install library

The first dataset is the ADAREORG source library, containing as a minimum the
following members:

JCLTESTx Executes ADAREORG in stand-alone mode

JCLxxx Executes ADAREORG in ADACMP Exit Mode

NATFDT Sample program written in NATURAL.

DOCxxx Describes release history & some extra

documentation.

Uxxxx Example user exits.

- where "x" is an identifying character string. The source library contains sample
JCL to run ADAREORG in both Exit and Stand-alone modes, the NATURAL
source for a program to extract the FDT of a file (NATFDT), sample user exits
(UXn), and some additional documentation

The NATURAL program NATFDT can be loaded into the DBA NATURAL
application. It runs in batch mode to generate ADACMP cards directly from the
FDT. The fields generated do not contain super or sub-descriptor entries,
although it flags their presence as comments.

Load library

The second Dataset contains the load modules for ADAREORG. It is
recommended that a backup copy of all install files be taken, particularly the load
library prior to applying any zap to the load modules for example the codeword.

Note: When moving ADAREORG modules to another load library, remember to
check block sizes. If the blocksizes of the two libraries are different, it is
recommended to move the modules using the linkage editor.

P A G E 4 5

Index

A
ABENDS, 33

ACCEPT parameter, 21

ADABAS

LF commands, 17

messages, 33

version support, 2

ADACMP

cards, 17, 45

exit mode, 4

ADAREORG

messages, 35

version, 2

ADAREP, 17

APPLY parameter, 23

C
Codeword error messages, 35

comments, 16

Control and processing parameters

parameters, 3

control parameters, 19

conversion

from Alpha, 28

from Binary, 28

from Foating Point, 28

from Fullword, 28

from Packed, 28

from Unpacked, 28

Long Alphanumeric fields, 29

periodicity, 29

Wide Alphanumeric fields, 29

D
data type conversion, 27

DDADA01, 8

DDADA02, 9

DDADA03, 9

DDAUSBA, 11

DDCARD, 11

DDDRUCK, 11

DDEBAND, 11

DDFAILX, 7, 8, 12, 25

DDFEHL, 12

DDKARTE, 11

DDNAMES, 8

DDPARM, 11

DDPRINT, 8

DDPRINTX, 12

DDWAN01, 10

DDWAN02, 10

DDWAN03, 11

DEFINE parameter, 25

E
error messages

Codeword, 35

DDPARM, 36

processing, 35

execution modes, 3, 7

EXIT mode, 4, 11, 12, 33

F
FXDATA field, 40

H
HEADER, 15, 30

I
INC, 19

ISN, 17, 32

J
JCL, 7

exit mode operation, 7

stand-alone mode operation, 8

L
LA field, 29

length conversion, 27

LET parameter, 23

level numbers, 16

LIMIT parameter, 25

M
messages, 33

modes of execution, 3

MUPEX, 9, 10, 15, 16

N
NATFDT, 17, 45

O
output files, 12

P
parameters

ACCEPT, 21

APPLY, 23

I N S T A L L A T I O N

P A G E 4 6

DEFINE, 25

LET, 23

LIMIT, 25

REJECT, 22

PE/MU, 16, 29, 32, 35

periodicity, 29

PREDICT, 17

processing parameters, 18, 21

R
REJECT parameter, 22

release contents, 41

S
stand-alone mode, 4

standard length, 16

superdescriptors, 16

syntax rules

ADACMP, 15

ADAREORG, 18

T
tape dataset, 45

TZ, 12, 15, 16, 31

TZINFO, 7, 8, 12, 16

U
User Exits, 39

USERISN, 10, 17

UTIL03, 17

V
variable fields, 20, 24

