
Treehouse Software, Inc.

ADAMAGIC
User Guide

A Product of CCA Software Pty Ltd

Version

4.2.4

Copyright Notice

Copyright 1994 - 2013 CCA Software Pty Ltd.

All rights Reserved.

Trademark Acknowledgements

ADABAS and NATURAL are trademarks of SOFTWARE AG of Germany and North
America. Solaris is a product of Sun Microsystems and HPUX is a product of Hewlett

Packard Corporation of the USA. Any other trademarks referred to herein are the
property of their respective owners.

Requirements for Confidentiality

This document contains trade secrets and proprietary information of CCA Software Pty
Ltd. Reproduction and/or modification of this document without the written approval of

CCA Software Pty Ltd. is prohibited. Use of this document is limited to licensed users of
ADAMAGIC or those given specific written permission of CCA Software Pty Ltd.

THE SOFTWARE WHICH IS DESCRIBED IN THIS DOCUMENT IS SUBJECT TO
LIMITATIONS ON USE, RELEASE, DISCLOSURE AND DUPLICATION AND TO

REQUIREMENTS FOR CONFIDENTIALITY, PROTECTION AND SECURITY
WHICH ARE SET OUT IN THE SOFTWARE LICENSE AND MAINTENANCE

AGREEMENTS.

CCA Software Pty Ltd.
P.O. Box 423, Blackburn, Victoria 3130

Australia

ABN: 35 060 664 057

Tel: +61-3-9894-0055, Fax: +61-3-9894-0039

Email: info@ccasoftware.com.au
Web: www.ccasoftware.com

Version 4.2.4 rev 792, 7th November 2013
This is the Pre - Production release.

josephbrady
Text Box
Treehouse Software, Inc.2605 Nicholson Road, Suite 230 Sewickley, PA 15143 USA Phone: 724.759.7070Fax: 724.759.7067e-mail: tsi@treehouse.comhttp://www.treehouse.com

Table of Contents

INTRODUCTION................................... 1

FUNCTIONAL OVERVIEW......................... 1
VERSION COMPATIBILITY 4

PROCESSING OVERVIEW.................. 5

ADAMAGIC COMMAND LINE 5
ADAMAGIC INPUT SOURCES................. 5
ADAMAGIC OUTPUT SOURCES............. 5
PARAMETER AND ENVIRONMENT

VARIABLE SUMMARY 7
INPUT DATA .. 8
OUTPUT DATA .. 9
COMPRESSED OUTPUT FILE PROCESSING

CONSIDERATIONS.................................. 10
RESTART CONSIDERATIONS.................. 12

OPERATIONS 13

INPUT AND CONTROL PARAMETERS...... 13
CONTROL PARAMETERS........................ 14
GENERAL PARAMETER SYNTAX 15
MAGDUMP... 16
ASSONN... 16
DATANN.. 17
MAGDEVICE...................................... 17
MAGTYPE .. 18
MAGPROCESS................................... 18
MAGMODEL 19
MAGSCRIPT....................................... 19
MAGDTA.. 19
MAGDVT.. 20
MAGFDU .. 20
FILE ... 20
NEWFILE..21
DBID.. 21
SKIPREC ... 22
NUMREC .. 22
DLLDIR... 22
PARAMETER EXAMPLES........................ 25

EXTRACT AND/OR REFORMAT
COMMANDS .. 27

GENERAL COMMAND SYNTAX 27
RECORD AND FIELD SELECTION

COMMAND SUMMARY 28
SELECTION COMMANDS........................ 28
NAME.. 28
FILE ... 29
FTYPE ... 29
NORMALISE 30

FIELD AND OFIELD33
TEST...35

Literals...37
NTEST..40
RULE..41
LENGTH ..41
TYPE ..42

Data conversion Rules and Restrictions
...42
D type ..44

INDEX..44
FORMAT..45
LIMIT ...45
STARTAT ..46
ARCHIVE...46
DISCLAIMER......................................47

CREATE ADABAS FILES49

ADAMAGIC EXITS..............................51

INSTALLATION OF USER EXITS................52
USAGE CONSIDERATIONS.......................53

EXAMPLES ...55

FILE TRANSFER......................................55
COMPRESSED OUTPUT...........................56
EXTRACT OUTPUT..................................56

P A G E 1

Introduction

Functional Overview

ADAMAGIC reads mainframe (MVS, MSP or VSE) ADASAV datasets,
UNIX/WINDOWS ADABCK backup (cartridge(s) or disk files) or a UNIX/
WINDOWS ADABAS database to extract data from one or more selected
ADABAS files. Comprehensive selection criteria enable output files to contain
almost any desired subset of dumped records. If required, more than one extract
can be taken from any ADABAS file (using different selection/extraction
criteria). Regardless of how much output is requested, ADAMAGIC makes only
one pass of the input data.

Output files created by ADAMAGIC may be in several formats.

1. Format 1: is compressed UNIX ADABAS form, formatted as DTA
(compressed data) and DVT (compressed descriptor values) files as written
by ADACMP. Corresponding to each pair of DTA and DVT files, an
ASCII text file is written containing input parameters suitable for the
ADAFDU utility. ADAMAGIC can optionally be run to simply extract the
ADAFDU information without extracting any actual data, or to extract FDU
and DTA but not DVT.

2. Format 2: is “flat” file format. That is, the data will be decompressed and
written to one or more physical sequential files. The output can have either
fixed or variable length records. There are no separators between fields in a
record.

3. Format 3: is .CSV format. That is, the fields in each record will be
decompressed and delimiter separated suitable for input to a program such
as Microsoft Excel.

Files produced in format 1 contain all fields from the input data. The only
controls over which records are written are that you may skip some records at
the start of an ADABAS file and stop writing after a specified number of records
have been output. The default is to copy all input records to the output files.

The records and fields written to format 2 and format 3 files are controlled by
comprehensive selection criteria, which enable the output files to contain almost

Chapter

1

I N T R O D U C T I O N

P A G E 2

any desired subset of the input records. If required, more than one extract can be
taken from any ADABAS file (using different selection/extraction criteria). The
extracted data can be the entire decompressed record, suitable for reloading
using ADACMP. Alternatively, any subset of the fields in each record can be
nominated for extraction. Allowing the possibility of length overrides and field
occurrence limits provides additional flexibility. If field occurrence limits are
provided then it is easier to process PE and MU fields in the extract using
languages such as NATURAL or COBOL. Alternatively, ADAMAGIC can
normalize the output to eliminate PE/MU occurrences by building multiple
output records. This feature is very useful for loading SQL-based databases, such
as DB2 or ORACLE. The output files are sequential with either fixed or variable
length records. ADAMAGIC control parameters use a simple syntax, and report
any errors clearly.

ADAMAGIC itself imposes no theoretical limit to the number of format 2 and
format 3 files that can be created. However, if you request too many extract files
your system may not have enough memory or allow enough open file descriptors
to cope with your request.

Version 4 of ADAMAGIC will run in a UNIX environment or a Microsoft
Windows /2000/2003/XP/VISTA environment. In this document, unless
specifically stated otherwise, the information applies to both the UNIX and
WINDOWS environments.

ADAMAGIC is useful to the UNIX or WINDOWS ADABAS Database
Administrator for the following tasks:

� Convert mainframe ADABAS databases to UNIX;

� Easily access historical data;

� Populate test databases;

� Archive old data;

� Extract large amounts of data cheaply for overnight batch processing;

� Data export - where extracts of defined sets of data are required for input to
another DBMS, SAS, or transmission to remote sites;

� Sequential processes - i.e. wherever extensive batch processing of ADABAS
files is performed and contention with online users is to be avoided;

� Data extract - where the ability to rerun or referential integrity are required
without disturbing online operations;

P A G E 3

� Periodic summary reports - e.g. monthly or quarterly summaries are to be
produced which may require reruns, e.g. cross-tabulation reports;

� Improved performance - if cost of processing is an important consideration,
ADAMAGIC, with its efficient sequential processing and parallel extracts,
offers optimal performance characteristics;

� Ad hoc analysis and data mining activities - across historical or current
database data;

� File reorganizations - where files are required for input into a file
reorganization utility such as CCA's ADAREORG.

Optionally, a UNIX script or NT batch file can be invoked synchronously at the
end of each output file to perform additional processing, such as to execute
ADAFDU and ADAMUP utilities.

ADAMAGIC uses standard input parameters similar to other ADABAS utilities,
which can be input via the console if ADAMAGIC is run in foreground.

A parameter is needed for each file to be selected. If required, the file number
that is output can be different from the file number in the input.

Under UNIX, normally ADAMAGIC will be executed from a script, with
parameter input redirected to come from the script itself, and console output
redirected to a file. The normal way of executing ADAMAGIC under NT would
be from a batch file with parameter input coming from the file named by the
PARMFILE environment variable. Console output also may be redirected to a
file. If the ADASAV input is on tape, mount messages will be sent to stderr, so
you should not redirect stderr if mount messages are to be actioned.

A special compressed "model" input file is needed if you are producing format 1
output files. This is simply any compressed DTA file from your UNIX or NT
database (typically devoid of data). The sole purpose of this file is to enable
ADAMAGIC to obtain version information from the header record.

ADAMAGIC can be used to convert all application data files from an EBCDIC
ADABAS database to equivalent files in a UNIX or NT ASCII ADABAS
database. Note that you would not normally convert system files.

WARNING: If your input data is from an MVS database and contains floating
point (G format) fields, these will be converted to UNIX or WINDOWS format.
However if they are not normalized MVS floating-point fields the conversion
result will be unpredictable, in a future version the output fields will be set to
zero or empty, as appropriate with a warning message.

I N T R O D U C T I O N

P A G E 4

Version Compatibility

UNIX/WINDOWS - ADAMAGIC Version 4 applies to UNIX and WINDOWS
ADABAS Version 3 or later. ADABAS versions prior to that release are not
supported by ADAMAGIC.

Mainframe - ADAMAGIC Version 4 applies to mainframe ADABAS version 6
(or later) databases, including v7.4.x. ADABAS versions prior to that mainframe
release are not supported by ADAMAGIC.

P A G E 5

PROCESSING OVERVIEW

ADAMAGIC command line

To invoke ADAMAGIC, use the following command line.

adamagic [-v]

The –v switch is optional and means produce verbose messages. If this switch is
set, ADAMAGIC will send messages to the statistics file (stdout) to let you
know what it is doing. If ADAMAGIC detects that it is running in a console
environment, -v is set automatically. However, ADAMAGIC is not always able
to detect a console so the –v switch is provided for you to force verbose
messages.

ADAMAGIC input sources

� control statements (stdin)

� operator replies (stdin - reopened)

� a file specified by the PARMFILE environment variable

� some parameters optionally can be specified via environment variables

� model DTA file

� one of:
♦ mainframe ADASAV dataset
♦ UNIX/ WINDOWS ADABCK files
♦ UNIX/ WINDOWS ADABAS database

ADAMAGIC output sources

� messages (stdout)

� reports (stdout or user specified file)

Chapter

2

P R O C E S S I N G O V E R V I E W

P A G E 6

� operator prompts (stderr)

� FDU, FDU, FDU ...

� DTA, DTA, DTA ...

� DVT, DVT, DVT ...

� Zero to many user specified files to hold records selected by selection
specification parameters.

P R O C E S S I N G O V E R V I E W

P A G E 7

Parameter and Environment Variable Summary

File Environment
Variable or
Parameter

Storage
Medium

Additional Information

Backup MAGDUMP disk, tape foreign ADASAV or ADABCK

 MAGDEVICE Backup device (tape/disk)

 MAGTYPE Backup system
(UNIX/WINDOWS/mvs).

 MAGPROCESS Specifies whether DAT, DVT
and/or FDU files will be
produced.

Model
compressed

MAGMODEL disk output of ADACMP or
ADAULD, only need the header.

<none> MAGSCRIPT disk optional executable, DBID & file
number as arguments

Compressed
data

MAGDTA disk file number will be suffixed

Compressed
descriptors

MAGDVT disk file number will be suffixed

ADAFDU
statements

MAGFDU disk file number will be suffixed

Control
statements

stdin (or
PARMFILE file)

 Control parameters cannot be
supplied via environment
variables.

ADAMAGIC
messages and
reports

stdout Reports may be sent to a disk file
instead of stdout.

Mount
messages

stderr

Extract file(s)
specifications

your parameter
name(s)

in the
parameter

optional, as many as needed

P R O C E S S I N G O V E R V I E W

P A G E 8

input

Input Data

The main input can be one, and only one, of the following types of file:

• a mainframe MVS (OS390, z/OS), MSP/EX or VSE ADASAV backup;

• a UNIX or WINDOWS backup;

• a UNIX or WINDOWS ADABAS database.

The main input is specified with the environment variable or parameters
MAGDUMP or ASSOnn/DATAnn. MAGDUMP and ASSOnn/DATAnn are
mutually exclusive.

The UNIX or WINDOWS (ADABCK) backup input can be on disk or single-
tape medium such as an EXABYTE cartridge written by ADABCK (off-line,
single drive, part or full backup). An ADABAS database must be on disk.

Where main input is an ADASAV backup written by a mainframe ADABAS
system, it must have absolutely no translation (i.e. not converted to ASCII) and
may be on media such as ½” 9-track tapes which can be read by your UNIX or
NT system or on disk.

EXABYTE cartridges are also suitable for mainframe backup data.

The mainframe tape should preferably have IBM standard labels, although
unlabelled tapes are acceptable (using "MAGDEVICE = utape" parameter).

Because ADAMAGIC needs to read past the “tape marks” which separate the
mainframe labels and data, the tape device must exhibit BSD behavior (e.g.
SOLARIS systems may need a device with “b” suffix, such as /dev/rmt/1b.)

If you are reading mainframe backup data from disk, the file must not contain
any labels; it must be an exact image of the IBM ADASAV VB format records,
including the binary record length (rdw or record descriptor word) which is part
of the VB format. The block boundaries will normally disappear, along with the
binary block length (bdw or block descriptor word) when you transfer the data as
binary. If, however, you manage to transfer to a UNIX/WINDOWS file with the
bdw intact, you should use MAGDEVICE = bdisk. (See MAGDEVICE
parameter for explanation).

P R O C E S S I N G O V E R V I E W

P A G E 9

Note that ADAMAGIC does not need to read all the ASSO part of the input.
ADAMAGIC only reads the first part of the ASSO which contains the GCB,
FCB and FDT information. Therefore, where input data is on multiple tape
volumes, second and subsequent tape volumes containing only ASSO data can
be omitted from the input, as can volumes containing data for unselected files.
Tape volumes must be mounted in the correct (ascending RABN, ASSO then
DATA) sequence.

Even disk-based input can exist in multiple files - you will be prompted at run
time if ADAMAGIC needs to obtain more data than is in the main disk file.
There will be no prompting for more data when the main input is an ADABAS
database. You must specify all necessary ASSOnn and DATAnn parameters.

Auxiliary input is a small disk file containing a sample ULDDTA as written by
ADAULD. This file is used to provide version information for writing the
headers of compressed output files and for determining the byte order for binary
fields in the output file(s). This file is associated with the environment variable
or parameter MAGMODEL.

Output Data

For each file, an FDU, DTA and DVT file may be written. ADAMAGIC will
suffix each of the filenames with a 4-digit file number (leading zeros will be
inserted if necessary). The FDU file can be edited and used as input to
ADAFDU if needed. The DTA and DVT files are indistinguishable from files
produced by the UNIX ADAULD utility.

Note that these DTA and DVT files cannot be written to tape - ADAMAGIC
may need to write to many files “concurrently”, as the file blocks on the input
medium are intermingled, and writing to tape would therefore require more tape
drives than is usual. Error messages are written to standard output. File statistics
are written to standard output.

P R O C E S S I N G O V E R V I E W

P A G E 1 0

Compressed Output File Processing Considerations

The notes in this section apply only if you are producing output DTA, DVT
and/or FDU files.

Mainframe ADASAV input will normally be on ½” non-cartridge magnetic tape
reels, as this is the lowest common denominator (although other media types can
be used so long as you can write them on the mainframe and read them on your
UNIX/WINDOWS system). Consequently, volume mounting is an issue.

ADAMAGIC will write a message to stderr where an ADASAV tape mount is
needed (one message per tape volume). These prompts should be answered by
the operator entering OK after the correct tape is mounted, or ABORT if the tape
cannot be mounted.

When ADAMAGIC requests the “next” tape, you can skip a volume if you know
that it is not needed (e.g. any volume containing only ASSO information, except
the first volume, does not need to be mounted). Tape volumes must be loaded in
the same sequence as they were written.

ADAMAGIC does not communicate with the operator when a
UNIX/WINDOWS ADABCK tape is the input medium, but expects the tape to
be pre-mounted.

ADAMAGIC can also accept ADASAV dumps that have been transferred in
binary from a disk on the mainframe to a disk on the UNIX/WINDOWS system.
This format requires that the record descriptor words on the mainframe in VB
format be faithfully copied to the UNIX/WINDOWS file. See explanation of the
MAGDEVICE parameter (Page 17) for more information on this.

ADAMAGIC drops all field and file security information when it builds its
output compressed files.

ADAMAGIC will not generate hyper descriptor or phonetic descriptor values, so
you should invert the file later if you use these descriptors.

ADAMAGIC does not support the rarely used “virtual field” facility of
ADABAS.

Remember that the checkpoint and system files should not be processed through
ADAMAGIC, as they will have no meaning to UNIX/WINDOWS ADABAS.

This version of ADAMAGIC does not process version 4 backups, nor will it
process online backups. Partial backups (e.g. selected file backups) can be
processed. By using partial backups, you may be able to speed processing by
running two ADAMAGIC sessions in parallel.

P R O C E S S I N G O V E R V I E W

P A G E 1 1

If you are using disk as the input medium, the UNIX 2-Gigabyte file size limit
can be sidestepped by using partial backups. Another method is to arrange for
the input to be on multiple disk files, e.g. by copying MVS tape volumes to
individual disk files before transferring with FTP.

If you have embedded hex values in a field of type A, they will not pass correctly
through the EBCDIC to ASCII translation. This is not a problem where the
input is a UNIX/WINDOWS ADABCK dump.

If you use over length alpha fields (e.g. by having a DDM conflicting with the
FDT, or by using length override explicitly in NATURAL), ADAMAGIC will
issue a warning, but will pass the data through to the compressed output files
with the over length retained. Note that such files could not subsequently be
processed by the ADADCU utility if this was ever needed.

Remember that U type fields are stored in a longer internal format for
UNIX/WINDOWS ADABAS, so allow for this when calculating blocksizes for
your database (although it is somewhat offset by a shorter representation of non-
NU nulls in UNIX/WINDOWS ADABAS).

Also note that the ADAFDU input parameters generated by ADAMAGIC may
need extra safety margins manually added to the DATA and ASSO size
specifications before using them. (ADAMAGIC allocates 10% above the
amount of data actually in use).

ADAMAGIC will need a substantial amount of disk space to store the
compressed output files, up to the same amount of space used by the database
itself. Of course, you will need a lot less space than any other method of data
transfer (which would have to use uncompressed files). It is possible to save
even more space by using the "MAGPROCESS = short" parameter. This causes
ADAMAGIC to NOT write DVT files. You will need to invert the descriptors
using ADAINV if you use the “short” option.

If you reorganize your mainframe database before transferring the data with
ADAMAGIC, you will make it simpler to operate ADAMAGIC and coordinate
with ADAFDU and ADAMUP runs. This is because files will tend to be
completed one after another in order, instead of being intermingled on the tapes.
A side effect is that ADAMAGIC will use less memory to run.

When transferring a large database, it is useful to note that you can begin
ADAMAGIC processing on UNIX/WINDOWS before the ADASAV process on
the mainframe completes - just load tapes for ADAMAGIC as soon as they are
written on the mainframe.

P R O C E S S I N G O V E R V I E W

P A G E 1 2

Although ADAMAGIC has been exhaustively tested, it is important that you test
the validity of transferred data yourself. Judicious use of ADAVFY, plus
inspection of random records in detail, plus execution of programs to reconcile
totals, plus user testing is recommended. If you should happen to unload a file
that was originally loaded from ADAMAGIC, you will notice that the descriptor
byte counts and occurrences can be compared with similar counts and
occurrences output by ADAMAGIC. However, you should not expect the DTA
and DVT files to be identical because:

(1) ADAMAGIC will set a different timestamp in the header;

(2) ADAMAGIC will probably use empty field counts in a more efficient way,
and

(3) ADAMAGIC produces DVT values for a PE group in a different but
equivalent order.

Restart Considerations

If an ADAMAGIC execution failed (e.g. because of a tape IO error), any files
which had been completed and had their statistics written to standard output will
not need to be done again in any rerun of ADAMAGIC. ADAMAGIC does not
synchronize with the ADABAS system in any way, therefore it is never
necessary to reset the DIB or restart the nucleus.

If you use the MAGSCRIPT option you may cause restart complications. If you
run ADABAS utilities with an ADAMAGIC end of file script, you should be
very cautious. Note that ADAMAGIC will cease processing until the
synchronous completion of your script. If your script executes an asynchronous
activity, you should have a mechanism to ensure that any ADABAS utility runs
should proceed in serial fashion.

P A G E 1 3

OPERATIONS

Input and Control Parameters

The following control parameters are available:

C MAGDUMP = path name
C ASSOnn = path name
C DATAnn = path name
O MAGDEVICE = device name
O MAGTYPE = system name
O MAGPROCESS = option
O MAGMODEL = path name
O MAGSCRIPT = path name
O MAGDTA = path name
O MAGDVT = path name
O MAGFDU = path name
C FILE = number
O NEWFILE = number
O DBID = number
O SKIPREC = number
O NUMREC = number
O DLLDIR = path name
O MAGX5FDT = path name
O FLAGS = option

Where C = required but conditions apply and O = optional

As well as the control parameters listed above, there are several other input
commands which may be used interactively:

HELP or ? displays a help panel containing parameter summaries.
SHOW or * displays current parameter values.
! followed by a command executes a shell command.
QUIT abandons the interactive session.
START terminates the parameter phase and initiates execution.

There are also record selection parameters which are explained in the next
chapter.

Chapter

3

O P E R A T I O N

P A G E 1 4

Control Parameters

Control parameters can be supplied to ADAMAGIC in up to four different ways.
Parameters may be supplied via environment variables, entered on the command
line, typed in at the console and/or supplied in a file named by the PARMFILE
environment variable. Environment variables are read first and may be
overridden by parameters from the command line and then from the console or
the PARMFILE file. If input is supplied both via the PARMFILE environment
variable, and via command line input redirection, then the PARMFILE input
takes precedence.

Note that if environment variables are set but not required, they must be unset
before running ADAMAGIC, otherwise errors may occur. One way to do this,
under UNIX, is to run a script similar to the following:

unset ASSO1
unset ASSO2
unset ASSO3
unset ASSO4
unset ASSO5
unset ASSO6
unset ASSO7
unset DATA1
unset DATA2
unset DATA3
unset DATA4
unset DATA5
unset DATA6
unset DATA7
../src/adamagic < $1

A script like the one above will unset the environment variables only for the
execution of the script and not effect the environment variables set in your shell
session.

NOTE: Set PARMFILE to the name (or full or relative path as desired) of the
file that contains ADAMAGIC's run time parameters. This will
cause ADAMAGIC to read the specified file instead of asking
for its parameters from the console. If PARMFILE is not set,
ADAMAGIC will read any environment variables and then
issue a console prompt to ask for any further parameters (or
overrides).

It is probably usual to use "SET PARMFILE=<filename/path>"
in an WINDOWS environment. Otherwise you will get a
(probably) unwanted console prompt.

Examples of PARMFILE values:

O P E R A T I O N

P A G E 1 5

SET PARFILE=magicparms.txt
SET PARMFILE=c:\mydir\magicparms.txt
SET PARMFILE=..\parmdir\magicparms.txt

Syntax NOTE: Under WINDOWS, file names and parameter values are not

case sensitive. Under UNIX, parameter values (such as
MAGDEVICE) are not case sensitive but file names and paths
are case sensitive. For either operating system, parameter values
may be specified in mixed case. Eg. MAGDEVICE=tape or
MAGDEVICE=Tape

Also, note that UNIX systems use / as a directory delimiter and
WINDOWS uses \ as a directory delimiter in a path
specification. If you copy an example parameter set from one
system to the other, remember to change the slashes.

General Parameter Syntax

• Any record in the input that starts with a hash (#) or an asterisk (*) is a
comment record and is ignored.

• Blank lines are ignored.

• Each record consists of a number of "words" (where a word is a string of
symbols preceded or followed by any number of delimiting blanks).

• For control parameters, the type of record is decided by the first word in the
record.

• Blanks are the only word delimiters and cannot be embedded in a word
(except in the special case where a blank can be embedded in a quoted literal
constant string).

• Comments can be added after the last significant word on any record by
preceding the comment with a semicolon (;).

• Records cannot be continued. Ie. All parameters and values for a keyword
must appear in the same record.

• Records can appear in any order (except for the hierarchical order of FILE
and its subordinates).

• Case is not normally significant. It may be significant within user specified
values that are used for comparison with fields in the database.

O P E R A T I O N

P A G E 1 6

MAGDUMP

MAGDUMP = path name

Optionally override any MAGDUMP environment variable. It must specify the
file name (or tape device name) of a mainframe EBCDIC ADASAV database
backup or a UNIX/WINDOWS ASCII ADABCK database backup being input
to ADAMAGIC. This is the main input to ADAMAGIC. See also the
associated parameters MAGDEVICE and MAGTYPE below.

Conditionally required - MAGDUMP is required if the primary input is an
ADABAS backup file. It must be omitted if the primary input is an ADABAS
database.

ASSOnn

ASSOnn = path name

Optionally override any ASSOnn environment variable(s). It must specify the
file name of the ASSO portion of the UNIX/WINDOWS database being input to
ADAMAGIC. This is the main input to ADAMAGIC. See also the associated
parameters MAGDEVICE and MAGTYPE below.

Replace nn with a sequential number, starting at 1 and incrementing by 1 for
each subsequent ASSO file. Leading zeros are optional. Eg. ASSO1 ASSO02.
You must specify as many ASSOnn parameters as there are physical files in your
database’s Associator. You must also specify the ASSOnn files in ascending
RABN sequence.

If you are extracting information from the main database as defined by your
database administrator, you may find that the ASSOnn environment variables
are created when you log in. If that is the case you will not need to specify any
ASSOnn parameters.

Note: The database must be stopped or the files to be extracted must be locked
before reading a database directly, otherwise data integrity cannot be guaranteed.

Conditionally required - ASSOnn is required if the primary input is an
ADABAS database. It must be omitted if the primary input is an ADABAS
backup.

O P E R A T I O N

P A G E 1 7

DATAnn

DATAnn = path name

Optionally override any DATAnn environment variable(s). It must specify the
file name of the DATA portion of the UNIX/WINDOWS database being input to
ADAMAGIC. This is the main input to ADAMAGIC. See also the associated
parameters MAGDEVICE and MAGTYPE below.

Replace nn with a sequential number, starting at 1 and incrementing by 1 for
each subsequent DATA file. Leading zeros are optional. Eg. DATA1 DATA02.
You must specify as many DATAnn parameters as there are physical files in
your DATA. You must also specify the DATAnn files in ascending RABN
sequence.

If you are extracting information from the main database as defined by your
database administrator, you may find that the DATAnn environment variables
are created when you log in. If that is the case you will not need to specify any
DATAnn parameters.

Note: The database must be stopped or the files to be extracted must be locked
before reading a database directly, otherwise data integrity cannot be guaranteed.

Conditionally required - DATAnn is required if the primary input is an
ADABAS database. It must be omitted if the primary input is an ADABAS
backup.

MAGDEVICE

MAGDEVICE = device name

Optionally override any MAGDEVICE environment variable. It must be tape,
utape, disk, bdisk, or db and specifies the device type of the primary input file.

Tapes can be standard IBM labeled (tape) or IBM unlabelled (utape). If multi-
volume tape input is used, ADAMAGIC will write a mount request to stderr at
the end of each tape reel.

Disk files produced by FTP from the mainframe normally will not contain
“block descriptor words”. If you have a method of transferring mainframe
ADASAV information to UNIX/WINDOWS which preserves the block
descriptor word (see next paragraph) you must use bdisk instead of disk.

Disks can be “multi-volume” too - ADAMAGIC will prompt for a new filename
if the required data is not all found on the main disk input file. Disk input must

O P E R A T I O N

P A G E 1 8

not contain tape label data. If MAGTYPE is “UNIX ” (see below) only disk or
tape is allowed for MAGDEVICE and data is, of course, ASCII (without IBM
labels!).

Optional - If omitted, ADAMAGIC assumes disk unless the MAGDUMP file
name starts with “/dev/”, in which case it assumes tape.

Also see File Transfer in Chapter 7 for further information.

MAGTYPE

MAGTYPE = system name

Optionally override any MAGTYPE environment variable. It must be MVS,
UNIX , or NT [for WINDOWS] and identifies the type of system on which the
ADABAS backup was produced or on which the ADABAS database resides.

Optional - If omitted, ADAMAGIC assumes MVS unless MAGDEVICE=db, in
which case the environment variable “OS” is checked. If the value of “OS”
contains the letters “NT” then MAGTYPE defaults to NT, otherwise
MAGTYPE=UNIX is assumed.

MAGPROCESS

MAGPROCESS = option

Optionally override any MAGPROCESS environment variable. It must be full ,
short, fdu or none.

When full is specified, the FDU parameters as well as the DTA and the DVT are
produced for each selected file. When short is specified, the DVT is not
produced. When fdu is specified, neither the DTA nor the DVT is produced.
The full option should be used if you intend to load the output on to a database.
The short option might be used if you only wanted to decompress the DTA
output. The fdu option is useful if you just need to obtain file definitions or to
check the contents of the backup.

Optional - If omitted the default is none.

O P E R A T I O N

P A G E 1 9

MAGMODEL

MAGMODEL = path name

Optionally override any MAGMODEL environment variable. It must be the file
name of a compressed DTA file produced by your UNIX/WINDOWS ADAULD
utility. It need not contain any data because it is only read to obtain version and
byte order information about the machine for which the output files are intended.
That information is contained within the first hundred or so bytes in the file.
The default is the file “magmodel” in the current directory. (For Unix users, both
“magmodel” and “MAGMODEL” will be tried.)

Conditionally required – A magmodel file is required, but you may omit the
parameter if you are happy with the default.

MAGSCRIPT

MAGSCRIPT = path name

Optionally override any MAGSCRIPT environment variable. It must be the file
name of a UNIX script or NT batch (.bat) file or executable program that takes
two arguments. ADAMAGIC will execute this command as a system call at
end-of-data for an output compressed file. The two arguments passed are the
DBID and the file number of the output compressed file.

Optional - The default is no script.

MAGDTA

MAGDTA = path name

Optionally override any MAGDTA environment variable. It specifies the "base"
filename for the output DTA file. ADAMAGIC will append a 4-digit file
number to this base filename to distinguish multiple DTA files written. (Eg.
MAGDTA=tstdta and a file number of 21 will produce the output file named
“tstdta0021”.)

DTA files will not be used if the MAGPROCESS option is set to fdu or none.

Optional – The default base name is “dta” in the current directory. If
magprocess=none this parameter is ignored.

O P E R A T I O N

P A G E 2 0

MAGDVT

MAGDVT = path name

Optionally override any MAGDVT environment variable. It specifies the "base"
filename for the output DVT file. ADAMAGIC will append a 4-digit file
number to this base filename to distinguish multiple DVT files written. (Eg.
MAGDVT=tstdvt and a file number of 21 will produce the output file named
“tstdvt0021”.)

DVT files will not be used if the MAGPROCESS option is set to short, fdu or
“none”.

Optional – The default base name is “dvt” in the current directory. If
magprocess=none this parameter is ignored.

MAGFDU

MAGFDU = path name

Optionally override any MAGFDU environment variable. It specifies the "base"
filename for the output FDU file. ADAMAGIC will append a 4-digit file
number to this base filename to distinguish multiple FDU files written. (Eg.
MAGFDU=tstfdu and a file number of 21 will produce the output file named
“tstfdu0021”.)

The FDU files written by ADAMAGIC contain suggested ADAFDU control
statements which could be used when defining the file to UNIX or NT. It is
important that you review these statements (e.g. for appropriate space values)
before using them with ADAFDU. ADAMAGIC will generate space values
expressed in megabytes, based on the space actually in use for each file plus an
allowance of an extra 10%.

FDU files will not be used if the MAGPROCESS option is set to none.

Optional – The default base name is “fdu” in the current directory. If
magprocess=none this parameter is ignored.

FILE

FILE = number

O P E R A T I O N

P A G E 2 1

This parameter may be entered multiple times (once per file selected from the
primary input). It establishes a “processing mode” under which other file
specific parameters are interpreted.

The parameters that will be associated with a preceding FILE parameter are
listed below (NEWFILE, NUMREC etc.).

Note - If these FILE-dependent parameters are positioned BEFORE any FILE
parameters, they will be taken as GLOBAL DEFAULTS that will apply to ALL
subsequent FILE parameters.

Conditionally required – This parameter is required if you want to create DTA,
DVT and/or FDU output files. Otherwise it may be omitted.

NEWFILE

NEWFILE = number

Use this parameter to renumber an ADABAS file written to a DTA, DVT or
FDU file. This is the file number that will be used in the output. This file
number will be used as the suffix to the DTA, DVT and FDU output file names,
will be embedded in the DTA and DVT headers and used in the FILE parameter
in the FDU file. It is not possible for ADAMAGIC to write 2 files with the same
NEWFILE, even if they are for different DBIDs.

This parameter is only used if you are producing DTA, DVT or FDU output
files.

Optional – Default is the same number used as input (i.e. the previous FILE
parameter).

DBID

DBID = number

Use this parameter to renumber an ADABAS database written to a DTA, DVT
or FDU file. This is the target database-id that will be used in the output. This
DBID will be embedded in the DTA and DVT headers and used in the DBID
parameter in the FDU file. It will also appear as an argument passed to any
MAGSCRIPT command (followed by NEWFILE argument). Different FILEs
may have different DBIDs as long as the file number is unique.

This parameter is only used if you are producing DTA, DVT or FDU output
files.

O P E R A T I O N

P A G E 2 2

Optional – Default is the input database-id from the primary input file.

SKIPREC

SKIPREC = number

This specifies the number of records (i.e. ISNs) that will be skipped before
commencing to write records to DTA and DVT for the currently active FILE
number.

Note that record order is as found on the input (RABN sequence) - which may
not be the same as logical order on the database.

Optional – Default is to not skip any records.

NUMREC

NUMREC = number

This specifies the maximum number of records (i.e. ISNs) that will be written
for the currently active FILE number.

Note that record order is as found on the input (RABN sequence) - which may
not be the same as logical order on the database.

Optional – Default is to not skip any records.

DLLDIR

DLLDIR = path name

This specifies the directory path where the Adamagic exits may be found. The
ddl/shared-object file will have different names, depending on the OS on which
Adamagic is being run, as follows:

Windows/NT libAdamagic_exits.dll

Solaris libAdamagic_exits.so

Linux libAdamagic_exits.so

HPUX libAdamagic_exits.0

The directory path must not include the ADAMAGIC exits shared library name.

O P E R A T I O N

P A G E 2 3

With the exception of Windows/NT, the file names in the table above may be
symbolic links. The path name must be a single directory (folder) without
trailing (back)slash. DLLDIR may be specified either as an environment variable
or in the parameter cards. If it is not specified Adamagic will do an OS
dependent search as follows:

Windows/NT 1. The directory from which Adamagic loaded.

2. The system directory.

3. The 16-bit system directory.

4. The Windows directory.

5. The current directory.

6. The directories that are listed in the PATH environment
variable.

Solaris 1. LD_LIBRARY_PATH

2. crle determined default path (contains either /usr/lib or
/usr/lib/64)

Linux 1. LD_LIBRARY_PATH

2. The list of libraries cached in /etc/ld.so.cache.

3. /lib, followed by /usr/lib

HPUX 1. /usr/lib

MAGX5FDT

MAGX5FDT = path name

MAGX5FDT specifies the name of a file containing field redefinition rules. This
can only be supplied via an environment variable. Field redefinitions can only be
supplied for type A (alpha) fields. These redefintions will be processed if:

• the source field type is A
• the MAGTYPE is MVS. In other words, only if an MVS to open systems

conversion is being done.

O P E R A T I O N

P A G E 2 4

One or more field redefinition rules can be added via a filename defined in a file
supplied in the environment variable MAGX5FDT. These redefinition rules
allow alpha fields to be treated as binary or packed etc, thus skipping EBCDIC
to ASCII conversion if the input data is from MVS.

Redefinition rules are of the form:

file.fnr|field=len,type:redef_elements

For example:

111.15|AA=30,A:10,A;7,B;10,A

where fields are:

• dbid, e.g. 111
• file number, e.g. 15
• 2-character field name, e.g. AA
• total field length, e.g. 30
• existing field type, e.g. A
• 1 - n redefinition elements

Redefinition elements are of the form:

len,type[;]

For example (from above):

7,B;

where:

• this element is 7 bytes long
• this element is binary
• ; indicates there is another element to follow

There are some caveats for use of these:

• the total of redefined fields must equal the total field length
• redefinition element lengths are in bytes. Do not confuse this with digits

in packed fields.

Sample code implementing this is also supplied in the sample user exit 5 in
libAdamagic_exits.cpp and libAdamagic_exits.c. This exit code may be
customised if desired.

O P E R A T I O N

P A G E 2 5

Note that the sample code also uses an environment variable MAGX5FDT. If
you supply user exit 5 and this environment variable, Adamagic will call UEX5
and will not use the internal redefinition facility.

FLAGS

The FLAGS parameter at present takes only one argument, REVLBIN, which
stands for "REVerse Little-endian BINary fields", meaning that little-endian
binary fields will be reversed to match the SAG default. This is contrary to
previous ADAMAGIC behaviour. If you do not supply this parameter then
processing defaults to the previous behaviour.

Example:

FLAGS = REVLBIN

Parameter Examples

= indicates a comment line
MAGDUMP=/adabas/ebcdic/dump99
MAGDEVICE = disk ;default
MAGTYPE = MVS ;default
MAGPROCESS = FULL ;default
MAGDTA = /adabas/new/dta-f ;file no will b e suffixed
MAGDVT = /adabas/new/dvt-f ;file no will b e suffixed
MAGFDU = /adabas/new/adafdu.input ;file no will b e suffixed
DBID = 59 ;general default for followin g files..
FILE = 11
FILE = 12
NEWFILE = 102 ;thus file (12) will be renumber ed to 102
FILE = 13
DBID = 120 ;file 13 will become file 13 in DB 120
FILE = 14

O P E R A T I O N

P A G E 2 6

Figure 1: ADAMAGIC Operation

P A G E 2 7

Extract and/or Reformat Commands

This chapter deals with how to select records from the primary input and create
sequential output files with decompressed records, possibly altering or ignoring
some data along the way. Extract and select commands may be coded instead of
or as well as the control parameters described in the previous chapter.

With the commands described in this chapter you will be able to supply the
names of your output files, specify whether you want fixed length or variable
length output records, select the records you want, change the type of some
fields (eg. unpacked to packed) and/or alter the data in specific fields.

Note that extract commands cannot be supplied via Environment variables.

General Command Syntax

In addition to the syntax specified in the Control Parameters chapter, selection
command records have the following syntax.

• The first word in a selection record associates it with all other records for the
same output file. That first word is restricted to a maximum of 100
characters and must not contain any spaces.

Chapter

4

R E C O R D E X T R A C T I O N

P A G E 2 8

Record and Field Selection Command Summary

The following selection commands are available:

extract-name NAME file-name
extract-name FILE nnn
extract-name FTYPE file-type rdw/delim-char
extract-name NORMALISE { short| long}
 ;spelling may be NORMALIZE
extract-name FIELD field-spec field-spec ...
extract-name OFIELD field-spec field-spec ...
extract-name TEST x test-word
extract-name NTEST x test-word
extract-name RULE a+b+c...
extract-name LENGTH nnn aa bb cc ...
extract-name TYPE x aa bb cc ...
extract-name INDEX nnn aa bb cc ...
extract-name FORMAT xxxxxxx
extract-name LIMIT nnnnnn
extract-name STARTAT nnnnnn
extract-name ARCHIVE file-name

Selection Commands

NAME

extract-name NAME file-name

This command names the output file. You may specify only a file name and that
file will be created in the current directory. Alternatively you may specify a
relative path and file name or an absolute path and file name. If a file exists with
the same name and path it will be overwritten.

If you supply a NAME and a FILE command and do not supply any other
commands for the same extract-name , all records from the specified file will
be extracted and decompressed into the specified output file. extract-name is
case sensitive and must not be longer than 255 characters.

Required – The NAME and FILE commands are the only commands that you
must supply if you want to create a decompressed file.

R E C O R D E X T R A C T I O N

P A G E 2 9

FILE

extract-name FILE nnn

File specifies the file number from the primary ADABAS input source that must
be read to find the data for this extract-name .

Required – The NAME and FILE commands are the only commands that you
must supply if you want to create a decompressed file.

FTYPE

extract-name FTYPE file-type {[rdw]
 [delimiter-character]}

The FTYPE command describes the attributes of the output file for this
extract-name .

The parameters are positional and must be specified in the order shown in the
command template above. file-type must be specified. The second parameter
is optional.

file-type can have the values flat or csv.

flat indicates that the fields in the output record should have their
standard length, with leading zeros or trailing blanks inserted if
necessary. There will be no separator between fields. Fields whose input
data is longer than the standard length will be truncated. If truncation
occurs a warning message will be written to the statistics report.

If there are no PE or MU fields then the output record length will be
constant. Also, if you specify the normalise command or specify an
index command for every variable occurrence field, the output record
length will be constant. In every other case the output record length will
be variable and depends upon how many occurrences there are of PE or
MU fields in the input record.

If you code the rdw keyword, flat records will start with an MVS style
variable file Record Descriptor Word (RDW) to make it easy to
determine the length of the record. An RDW is two bytes long and
contains the length of the record (including the RDW). The record length
is a two byte, unsigned binary number with the most significant byte
appearing first in the record. (Eg. X’4973’ means the record has a 2 byte
RDW and 18799 bytes of fields for a total length of 18803 bytes).

R E C O R D E X T R A C T I O N

P A G E 3 0

CSV indicates that the fields in the output record should have the
delimiter-character placed between fields. Each field will take up as
little space as possible, leading zeros or trailing blanks will be removed.
Fields whose input data is longer than the standard length will be output
in their entirety, no truncation will take place.

All data will be converted to text format and every record will be
terminated with a new line character (x’0A’).

If the field being converted to character format is format B (binary) it
will be treated as a binary number if the data length is 2 or 4. Any other
length will cause the field to be treated as a bit string. In the case of
binary numbers, the output will be the decimal equivalent. In the case of
bit strings, the output will be a series of 0 and 1 characters.

delimiter-character may be coded. The delimiter-character may
be any character except a digit (ie. must not be 0 through 9). If
delimiter-character is omitted it will default to a comma.

Records in a csv format file must have the same number of delimiters in
every record. Therefore, if you do not code a normalise command,
ADAMAGIC will force the use of normalise short.

Optional – The default is flat .

NORMALISE

extract-name NORMALISE {[short]|[long]}
 or
extract-name NORMALIZE {[short]|[long]}

normalise specifies that ADABAS recurring data (PE/MU fields) will be
separated out into multiple records.

When normalise is specified, ADAMAGIC will create a set of output records in
such a way that all data values in the input record appear in an output record. An
input record may contain zero or more MU fields, zero or more PE groups and
those PE groups may contain zero or more MUs. PEs are only allowed at FDT
level 01.

Any non-repeating data will be duplicated in each output record.

R E C O R D E X T R A C T I O N

P A G E 3 1

NORMALISE SHORT

The first output record will contain the first data value from each of the multiply
occurring fields. The second output record will contain the second value, and so
on. When there are no more values for a particular field, a null value will be
output where that field should be. Processing does not stop until all values of all
multiple fields have been output. No data is lost.

For example, say an input record has the FDT definition

 01,AA,4,A
 01,AB,30,A,MU
 01,AC,PE
 02,AD,6,A
 02,AE,20,A,MU

and one input record has the values

 AA=xyz
 AB occurs 5 times and has values Tom, Joan, A lice, Anton,

Louise
 AC occurs 3 times and has values AD=cook
 AE (2 occ) = Darwin,

Brisbane
 AD=assist
 AE (1 occ) = Melbourne
 AD=appren
 AE (1 occ) = Adelaide

ADAMAGIC would produce the following flat output record. (NOTE: fields are
in table format for clarity - ADAMAGIC would not insert the spaces or the
record number.)

 REC# AA ABocc AB AC AD AEocc AE
 1 xyz 5 Tom 3 cook 2 Darwin
 2 xyz 5 Joan 3 cook 2 Brisbane
 3 xyz 5 Alice 3 assist 1 Melbourne
 4 xyz 5 Anton 3 appren 1 Adelaide
 5 xyz 5 Louise 0

(The fields ABocc and AEocc are the number of occurrences of fields AB and
AE respectively.)

If the output format is csv then the same input record would produce the
following result.

 xyz,5,Tom,3,cook,2,Darwin
 xyz,5,Joan,3,cook,2,Brisbane
 xyz,5,Alice,3,assist,1,Melbourne
 xyz,5,Anton,3,appren,1,Adelaide
 xyz,5,Louise,0,,,

R E C O R D E X T R A C T I O N

P A G E 3 2

It can be seen from the above example that the number of occurrences of a PE or
MU is inserted in the output record immediately before the value for that group
or field. Occurrence numbers are greater than zero while there is data following
them. If the data has run out, the occurrence number will be zero. In flat format,
a zero occurrence number is not followed by any data for that group or field.
However, csv files require the same number of delimiters in each record.
Therefore, a zero occurrence number will be followed by the appropriate number
of delimiters.

NORMALISE LONG

Like normalise short, the first output record will contain the first values of all
multiply occurring fields. After that, all data other than the last occurring
multiple field will be constant in output records, with the last multiple field
changing until all its values have been output. Then the second last multiple field
will move to its next value and again enough records to cover all values of the
last multiple field will be written. The process will move backwards through all
the multiple fields in the record. (Note that this is logically what happens. The
records may not be written in the above sequence.) For example, if a record
contains three MU fields (AA, AB and AC) with 2, 3 and 2 occurrences
respectively, then the output would be

 x'03010101’ AA(1) AB(1) AC(1)
 x'03010102’ AA(1) AB(1) AC(2)
 x'03010201’ AA(1) AB(2) AC(1)
 x'03010202’ AA(1) AB(2) AC(2)
 x'03010301’ AA(1) AB(3) AC(1)
 x'03010302’ AA(1) AB(3) AC(2)
 x'03020101’ AA(2) AB(1) AC(1)
 x'03020102’ AA(2) AB(1) AC(2)
 x'03020201’ AA(2) AB(2) AC(1)
 x'03020202’ AA(2) AB(2) AC(2)
 x'03020301’ AA(2) AB(3) AC(1)
 x'03020302’ AA(2) AB(3) AC(2)

Each record will be prefixed by a series of bytes containing

1. The number of index bytes following this byte

2. A byte for each PE or MU field containing the occurrence number of
each multiple field in this record. Occurrence numbers start at 1.

These values are shown as x’xxxx’ in the above table. If format cobol has been
specified, the count and indexes will be two bytes each.

A special pseudo field of ## (see FIELD command on page 33) can be used to
output the ISN ahead of the physical PE/MU indexes. This combination can be
used as a physical, unique key if needed.

R E C O R D E X T R A C T I O N

P A G E 3 3

In addition, a special test (NTEST - see page 40) can be used on normalised
data. A bonus with normalised data is that the field order on output can be
specified (see the discussion of using the FIELD command with normalised on
page 34).

WARNING – normalise long can produce a huge number of output records.

Optional – maximum one per extract-name . The default for short|long is
short.

FIELD and OFIELD

extract-name FIELD field-spec field-spec ...
 or
extract-name OFIELD field-spec field-spec ...

The fields field-spec are extracted from the records in the ADABAS file
associated with this extract.

field-spec takes one of the following forms:

• xx
• xx(i-j)
• xx(i-j,k-l)
• xx(i-j,k-l,m-n)

where:

• xx is an ADABAS elementary field short name
• i,j ,k,l,m,n are integers in the range 1 through 253
• i is less than or equal to j
• k is less than or equal to l
• m is less than or equal to n
• byte ranges may overlap
• byte ranges may be out of byte sequence

If the same field name is specified more than once within the same
extract-name the first specification will prevail.

The facility to have byte ranges out of sequence is useful for rearranging fields.
(Eg. You may have a date field in ddmmyyyy format which is difficult to sort in
chronological order. You could use the byte ranges 5-8,3-4,1-2 to rearrange the
field into yyyymmdd format which sorts naturally.)

field-spec cannot contain embedded blanks.

R E C O R D E X T R A C T I O N

P A G E 3 4

If the field-spec contains the optional subfield specification then i, j , k, l, m
and n designate which bytes of the decompressed field will appear (concatenated
together) in the output. (For example, if LJ is an 8 byte field, "LJ" specifies all 8
bytes to be output, whereas "LJ(1-1,8-8)" specifies just two bytes output (the 1st
and last bytes). Up to three ranges of bytes may be specified.) Note that subfield
selection overrides any length specification for the same field, so the output
field may be shorter than the value of length. (Eg. If you specify length 8 and
field aa(2,3) for a field that contains the character string “ABCDEF ”, the
resultant output will contain “BC” with a length of only 2 bytes.)

The field order is irrelevant in a field command Ie. Fields are always extracted in
physical (FDT) order. If you want to specify the order of the output fields use
ofield (ordered fields) instead.

The "pseudo" field of ## can be used to represent the ISN. Specify ## as the field
name if you want the ISN to appear in the output record. If field ordering is in
effect the ISN will be placed within the other fields in the sequence specified.

The "wild field" designator of ** can be used to represent that all fields, except
the ISN, are to be included in the output record.

Note that fields must be elementary fields. Group fields (including PE group
names) are not permitted on this command. Note that ordering by ofield is
negated by the use of ** . ** always causes fields to be written in physical order.
You may use ** as a shorthand notation to save specifying all field names if you
want all fields written to the extract file and want to edit only a few fields. For
example:

extract1 field **
extract1 field ab(5-8,3-4,1-2)

would write all input fields to the output file and rearrange field AB.

All fields required may be specified on one record. If you are extracting a lot of
fields, the line could become very long and difficult to read. If desired, more
than one field or ofield command may be coded. For ofield, fields will be taken
in the order they appear in the input commands (Ie. start to finish, left to right). It
is not an error to mix field and ofield commands for the same extract-name . If
any ofield command is supplied for a given extract-name then the fields will
be ordered.

When ADAMAGIC is processing field selection, it creates an internal FDT. So
that the exact format of the output record can be determined, that internal FDT is
written out to a file. The file name is the extract file name with “.fdt” appended.
Eg. If you code extract2 name extract2.data then the internal FDT
will be written into file extract2.data.fdt .

R E C O R D E X T R A C T I O N

P A G E 3 5

This file is used by FDUGEN, which also requires control statements. These are
produced by Adamagic, and can be found in the file with “.inparm” suffix e.g.
extract2.data.inparm . Note however that the parameter values in the
“.inparm” file are taken from the input data, and take no account of the fact that
there may be less records in the output file than there were in the input file.
Hence it may be advisable to adjust these numbers down on occasion.

It is possible to select fields from within a PE and that selection may be in a
different field order from the input record. Also, you may select fields from a
PE, then select fields that are not in that PE, then select more fields from the
same PE. When fields are selected from within a PE, ADAMAGIC attempts to
maintain the PE structure, but that is not always possible. If you select more than
one field from the same PE and intersperse other fields amongst them, the result
will contain more than one PE with the same group name. For example:

The FDT for the input record contains (in part)
01,AQ,PE
 02,AR,3,A,NU
 02,AS,5,P,NU
 02,AT,5,P,MU,NU
01,AH,6,U,DE

and you code the following ofield command
extract2 ofield at ah ar

then the output FDT will look like
01,AQ,PE
 02,AT,5,P,MU,NU
01,AH,6,U,DE
01,AQ,PE
 02,AR,3,A,NU

Optional – One or more field and/or ofield commands may be coded per
extract-name . If omitted, all fields in the input record are written to the output
record (equivalent to coding a field-spec of **) and output fields will be in the
same sequence as they are read from the primary input file.

TEST

extract-name TEST x test-word

Used to define tests that will be used for record selection.

x represents the test identifier which must be alphabetic (A-Z) or numeric (0-9).
The letters are not case sensitive. Ie. A is considered to be the same test as a.
This test identifier should appear in at least one RULE command. The test
identifier must be unique across all test and ntest commands.

R E C O R D E X T R A C T I O N

P A G E 3 6

The test-word is a string that defines a comparison test and is structured as
follows:

field-spec.operator.literal

(e.g. AB.EQ.C'FRED')

where:

• field-spec is ff or ff (i-j) or ff (/*) or ff (i-j /*)
(ff=field, i=1st byte, j=2nd byte, see below for "/*")

• operator may be EQ NE GT GE LT or LE
or the following algebraic equivalents may be used
 = <> > >= < <=

• literal is of the form

♦ C'AB8' (character constant, including
numeric)

♦ U'123' (unpacked decimal constant)

♦ P'123' (packed decimal constant)

♦ B’1??101’ (binary string)

♦ G’123.987’ (floating point number)

♦ F’92164’ (fixed point binary number)

♦ X'000001010AFFFF' (hexadecimal constant)

♦ D’ddmmyyyy,01071999’ (date in ddmmyyyy format)

♦ EMPTY (keyword meaning null, zero or
blank)

The field ff is an ADABAS field and its standard length (after modification by
any length commands) must be greater than or equal to j (if specified). If i and j
are not specified the default is that i=1 (the 1st byte) and j=the field length (the
last byte).

Bytes i through j will be compared against a specified constant. This constant
should be j -i+1 bytes long. If not, it will be padded with appropriate
nulls/blanks/zeros or truncated as necessary so that a match can be made on j -
i+1 bytes.

R E C O R D E X T R A C T I O N

P A G E 3 7

Literals

The literal designator letter (C, P, etc.) may be specified in upper or lower case.

CHARACTER LITERALS

Syntax: [+]C’<character-value>’

The characters within a character literal are taken as they are typed and
compared in a case sensitive manner. The string between the single quotes may
contain any character desired.

If you want a case insensitive comparison to be performed, place a + (plus sign)
in front of the C. eg. +c’Smith’ will search for occurrences of “smith”,
“SMITH”, “Smith”, and so on.

If you need a single quote within the string, place two single quotes together (eg.
C’Joe’’s bike’).

UNPACKED DECIMAL LITERALS

Syntax: [-]U’<whole-decimal-number>’

The string between the single quotes must contain only decimal digits.

Unacked decimal literals default to positive. If you want to specify a negative
number, place a – (minus sign) in front of the U. Eg. –U’500’.

Note, it is valid to compare an unpacked numeric field with a character literal,
provided all the characters in the literal and the field are numeric. Adamagic will
automatically make any conversions necessary and make the comparison in
numeric mode.

PACKED DECIMAL LITERALS

Syntax: [-]P’<whole-decimal-number>’

The string between the single quotes must contain only decimal digits.

Packed decimal literals default to positive. If you want to specify a negative
number, place a – (minus sign) in front of the P. Eg. –P’500’.

BIT STRING LITERALS

Syntax: B’<string-of-1s-0s-?s>’

R E C O R D E X T R A C T I O N

P A G E 3 8

The string between the single quotes must contain only ones, zeros or question
marks. The question mark is used as a wild card when it does not matter whether
the corresponding bit in the input data is a one or zero.

The B literal is used when you want to compare a field (of any format) with a bit
string. If the data value has fewer bits than the number of characters in the
literal, the data will be padded on the right with zero bits. If the literal contains
fewer characters than the number of bits in the data value, the literal will be
padded on the right with question marks. The comparison is made with the input
data from left to right one bit at a time. Use a wild card (?) when you want to
ignore a bit position.

To compare a binary format field as a number, use the F literal. In this case the
length of the binary field must be either 2 or 4 bytes (16 or 32 bits). Note that
binary (B format) fields are unsigned so are always positive. Therefore do not
place a minus sign in front of the F.

FLOATING POINT LITERALS

Syntax: [-]G’<decimal-number-may-contain-fraction>’

The string between the single quotes must contain decimal digits and, optionally,
one decimal point.

Floating point literals default to positive. If you want to specify a negative
number, place a – (minus sign) in front of the G. Eg. –g’500’.

Tests involving “type G” fields (i.e. ADABAS version 5+ floating point) can be
made using the G’nn.mm’ floating point literal.

FIXED POINT BINARY LITERALS

Syntax: [-]F’<whole-decimal-number>’

The string between the single quotes must contain only decimal digits.

Fixed point binary literals default to positive. If you want to specify a negative
number, place a – (minus sign) in front of the F. Eg. –f’500’.

HEXADECIMAL LITERALS

Syntax: X’<hexadecimal-string>’

The string between the single quotes must contain only digits 0 to 9, the letters A
to Z (in upper or lower case) or commas.

R E C O R D E X T R A C T I O N

P A G E 3 9

The length of a hexadecimal literal (after conversion of 2n hex digits into n
bytes) may be different from the length of the input field. If the lengths differ,
the shorter will be padded on the right with hex zeros before the comparison is
made.

Note that hexadecimal literals may be made more humanly readable by splitting
them, at a byte boundary, with a blank or a comma. Eg. X’0134,AD3f,c456’ is
equivalent to X’0134AD3fc456’. Case is not significant.

Hexadecimal comparisons are performed left to right one byte at a time. No
conversion or rearrangement of the data is performed.

DATE LITERALS

Syntax: D’<format-literal>,<date>’

The syntax of a date literal is d’ddmmyyyy,01071999’ where ddmmyyyy
specifies the format the date is stored in the database field. Use the same format
to code the comparison date on the test command. The three components dd,
mm, and yyyy are keywords. They may appear in any order. Eg. Specify
yyyymmdd if your dates are stored with the year first, the month next and the
day last. Dates are compared in chronological order regardless of the format in
which they are stored.

Adamagic prefers 8 digit date fields. However, to cater for non-Y2K date fields
(IE. the year is 2 digits not 4) a six digit field is allowed to be compared with a
date literal. You must still code the date literal as above with 8 digits. The 6 digit
input field will be padded with a calculated century. If the year is in the 70s, 80s
of 90s then the supplied century number will be 19, otherwise it will be 20.

If an input field is null the date comparison is considered to be not true and the
record will not be selected for output.

EMPTY

The special literal empty may be used to mean a null, blank or zero of a length
appropriate to the field being tested. Empty may be in upper case, lower case or
mixed case.

You can only compare a field to be equal to or not equal to empty.

R E C O R D E X T R A C T I O N

P A G E 4 0

GENERAL NOTES

1. Normally, when a test is applied against a field that has multiple occurrences
(MU or fields within PE) then it will be considered "true" if ANY occurrence
value is "true" with respect to that test. If you wish the test to yield a "true"
value only where ALL occurrence values are "true", then you must add the /*
(as specified in the syntax on page 36), in order to force testing of ALL
occurrences.

2. TESTs are applied after applying any field, length or type specifications and
before processing normalise or index.

3. If the format of the input data is not the same as the comparison literal, the
input field will be converted to the literal format before making the
comparison.

4. It is not valid to compare binary (format B), floating point (format G) or
fixed point (format F) fields with a date literal.

Optional – A total of 36 test and ntest commands per extract-name may be
specified.

NTEST

extract-name NTEST x test-word

The NTEST command, apart from the omission of the "/*" specification, is
identical in syntax to the TEST command. NTEST stands for Normalisation
Test and means that the test is applied only after the basic record has been
selected as a result of TEST commands. It is applied not to the ADABAS record
but to EACH of the normalised records produced from any given ADABAS
record. It enables you, in effect, to select which occurrences will be output.
Obviously the "/*" is meaningless on normalised records which are "flat" records
without any multiple occurrences.

Fields specified in an ntest command must be multi-valued (IE. each field must
be either an MU or be a member of a PE group).

Optional – A total of 36 test and ntest commands per extract-name may be
specified.

R E C O R D E X T R A C T I O N

P A G E 4 1

RULE

extract-name RULE a+b+c...

a, b, c , etc. represent test identifiers defined in a TEST (or NTEST) command.
If only one test identifier is present, then no "+" is required. There must NOT be
any white space surrounding the "+" symbols. The meaning of this command is
that record selection will occur if ALL the comparison tests mentioned in this
command are true. If some tests are false for a certain record under a particular
rule, it is still possible for the record to be selected under another rule. (i.e. tests
are ANDed on any one RULE , but multiple RULE commands are ORed for a
given extract-name).

Note - where a TEST involves a field with multiple values (in a PE and/or MU),
it will be considered to be true if it is true for any of the multiple values, unless
the "/*" notation was specified in the TEST command.

Optional – As many rule commands as required may be specified for each
extract-name .

LENGTH

extract-name LENGTH nnn aa bb cc ...

nnn (1-253) is a length valid for the type of the fields aa, bb, cc, etc. The
minimum length of any field is 1 byte. The maximum length value (in bytes)
allowed for each field format (type) is as follows.

• A (alpha) – 253;
• U (unpacked numeric) - 29;
• B (binary) – 126;
• P (packed decimal) - 15;
• F (fixed point binary) – length value must be exactly 2 or exactly 4;
• G (floating point) – length value must be exactly 4 or exactly 8.

The effect of length is as if the ADABAS FDT actually contained the "standard
length" of nnn for those fields, and hence, the extracted decompressed field
length.

Fixed length fields cannot have a length override.

During extraction, fields may be truncated or padded out to the specified length.
If truncation occurs, a warning message will be issued.

R E C O R D E X T R A C T I O N

P A G E 4 2

Length will be ignored for CSV format output files because field lengths in
CSV files are always as short as possible.

As many length commands as needed may be specified.

Optional – The default is to use the standard length as found in the FDT.

TYPE

extract-name TYPE x aa bb cc ...

The fields aa, bb, cc , etc. will be converted to the data type x.

x (the output data type) may have one of the values:

• A (alpha);
• U (unpacked numeric);
• B (binary);
• D (date type);
• P (packed decimal);
• F (fixed point binary);
• G (floating point).

Support for long alpha fields (LA Only) has been introduced in this release of
ADAMAGIC.

Conversion from any data type to any other data type is permitted provided the
data adheres to the following rules, with the exception of D type, see below. The
output field length is the standard length from the FDT unless overridden by a
length command.

Data conversion Rules and Restrictions

• From A (alpha) - Where an alpha (A) type field is converted to a
numeric type field, all the characters must be numeric except for a
possible leading plus or minus sign, leading and/or trailing spaces (which
will be ignored), commas (which will be ignored) and one decimal point.
If a decimal point is found and the output field is other than float, the
fractional part will be lost (truncated) and a warning message issued.

If the output type is B then the converted number must fit into 32 bits
(unsigned). If is doesn’t, significant digits will be lost and a warning
issued.

R E C O R D E X T R A C T I O N

P A G E 4 3

If the output type is F then the converted number must fit into a two or
four byte, signed, binary number. If is doesn’t, significant digits will be
lost and a warning issued. If the length of the output field is not 2 or 4, 4
will be forced.

Conversion to output format G is limited to the first 100 characters. If the
length of the output field is not 4 or 8, 8 (double precision floating point
number) will be forced.

Significant digits beyond the size of the output field will be lost. If loss
of significant digits occurs, a warning message will be written into the
statistics report. If any non-numeric characters (other than those
mentioned above) are found, the output field will be set to empty and a
warning message written into the statistics report.

• B (binary) to F (fixed point binary) – Only the least significant two or
four bytes are converted which may result in the loss of significant digits.
If loss of significant digits occurs, a warning message will be written into
the statistics report.

• F (fixed point binary) to B (binary) – A straight copy is performed. No
conversion of the data is attempted. IE. The data is treated as a string of
bits, not a number.

• From P (packed) – If the output type is of shorter precision than the
number of digits in the packed value, high order significant digits will be
lost. If loss of significant digits occurs, a warning message will be written
into the statistics report.

• From G (float) – If the output type is of shorter precision than the
number of digits in the float value, high order significant digits will be
lost. If the output type is anything other than character (A or LA) then the
fractional part of the number will be lost. If any loss occurs, a warning
message will be written into the statistics report. Warning: Adamagic
uses standard system routines for processing floating point values. In
most cases the output value will be correct. However, the authors and
suppliers of Adamagic take no responsibility for any inaccuracies
introduced into your data due to the processing of floating point
numbers.

• From U (unpacked) – Unpacked data is compatible with all other types.
There are no restrictions when converting U type data.

This command can be used, for example, where unpacked data would be too
long for arithmetic operations, or where packed data is preferred for brevity.

R E C O R D E X T R A C T I O N

P A G E 4 4

Where a field is affected by both a TYPE and a LENGTH command, the TYPE
command is applied first.

As many type commands as needed may be specified.

D type

This type is used for a very specific conversion, i.e. from internal Date/Time to
the format yy-mm-dd (unless a date-exit (UEX4) is specified). It is only
applicable to csv output. Its purpose is to make internal Date/Times legible for
humans. It applies only to Date/Time fields stored in Natural’s internal format.
Natural’s other formats can easily be read as they are. Dates with year higher
than 70 are 19.. dates, those with year lower than 70 are 20.. dates. UEX4 makes
it possible to change the formatting of the date to anything desired (see
Adamagic exits).

Optional – The default is to write output fields with the same type as their input.

INDEX

extract-name INDEX nnn aa[#] bb[#] cc[#] ...

The fields aa, bb, cc , etc. must be either PE group fields or MU fields. nnn must
be a valid index (1-191). INDEX commands override the number of occurrences
found in the input records.

If more occurrences are present than nnn, then the occurrences from nnn+1
onwards are ignored. If fewer occurrences than nnn are present, then additional
null fields are output in order to make up the number. The recurring field(s) will
be preceded by a 1 or 2 byte count (see format cobol) that reflects the number of
occurrences in the output record (not the input). ADAMAGIC writes a message
to the statistics report each time the index limit is exceeded, specifying field
name, ISN, INDEX, and the number of occurrences.

The purpose of this feature is to allow "dumb" post-processing programs to use a
fixed record layout. Incautious use may cause a lot of wasted space in the extract
file.

The # after the field name is optional. If you append the flag “#” a different
output format is obtained.

R E C O R D E X T R A C T I O N

P A G E 4 5

- stands for number of occurrences. When this option is used, the PE/MU
entries will be padded out to the INDEX value with empty entries if necessary,
however the count field will contain the number of entries that contain real data,
as taken from the input record. For example, suppose INDEX 10 is specified for
field AA and that for a given record the actual number of entries in the input
record is only 3. Then the output will contain 3 entries from the input, plus 7 null
entries, but the count at the front will still only be 3.

As many index commands as needed may be specified.

Consider using normalise instead of index.

Optional – The default is to write the same number of occurrences as are read.

FORMAT

extract-name FORMAT xxxxxxx

The only allowed value for xxxxxxxx is COBOL. This will have the effect of
forcing output indices (i.e. occurrence counters) for MU or PE fields to be 2
bytes binary instead of 1 byte. The output may more easily be post-processed by
COBOL programs using OCCURS DEPENDING. This option will have no
effect if the NORMALISE option is also specified for the file.

Optional – The default is to write a 1 byte occurrence number.

LIMIT

extract-name LIMIT nnnnnn

"nnnnnnnn" is a number from 0 to very large (it must fit in a double precision
floating point variable). When the number of records read from the primary
input file exceeds this number plus the startat number minus 1, no further dump
records will be tested against selection criteria for this extract, (i.e. no more
output will be produced for this extract). If the limit is 0 then the extract file will
not be opened.

If normalise is not specified then the number of output records will equal
“nnnnnn”. If normalise is specified then the number of output records is not
predictable as it depends upon the number of occurrences of each multiply
occurring field in the input data.

Optional – The default is to read and process all input records.

R E C O R D E X T R A C T I O N

P A G E 4 6

STARTAT

extract-name STARTAT nnnnnn

"nnnnnnnn" is a number from 0 to very large (it must fit in a double precision
floating point variable). One less than this number of records will be read from
the primary input file but will not be tested against selection criteria or be
written to the extract file. Applying the selection criteria and possible writing to
the extract file will commence from the “nnnnnn”th record read.

NOTE that records are read in the physical order in which they appear in the
database. That is not necessarily ISN sequence.

Optional – The default is to read and process all input records.

ARCHIVE

extract-name ARCHIVE file-name

This command names an archive file. The archive command works in
conjunction with one or more test commands. If you specify an archive file, all
records not selected by any test command will be written to the archive file. For
example, you may code a test to select all records in your database that have a
certain date field on or after July 1st 1999. All records that contain that date or
later will be selected and written to the NAME command’s file. All records with
a date earlier than that specified will be written to the ARCHIVE file.

You may specify only a file name and that file will be created in the current
directory. Alternatively you may specify a relative path and file name or an
absolute path and file name. If a file exists with the same name and path it will
be overwritten.

NOTE that records are read and written in the physical order in which they
appear in the primary input file. That is not necessarily ISN sequence.

Also note that archive does not apply to ntest results.

Optional – The default is to ignore all records that are not selected by test
commands.

R E C O R D E X T R A C T I O N

P A G E 4 7

DISCLAIMER

Although ADAMAGIC’s record selection process has proven to be very robust
and reliable, it is wise to check that decompressed output is as expected. This
can be achieved by using the STARTAT and LIMIT commands to generate a
test output file with a small number of records (e.g. LIMIT 99) and then
browsing the output file with your favourite binary data viewer. You should also
thoroughly check all messages in the statistics report, particularly those
pertaining to loss of information. As with any data conversion exercise, it is also
prudent to retain the original primary input file(s) (or a backup thereof) until
satisfied that the extracted data has been tested and validated.

Here is a list of items that should be checked. The list is only a suggestion and is
not intended to be complete.

• Are ISN's needed in the output?

• Ensure that all PE's and MU's have the correct counts.

• Are output record lengths correct?

• If a suitable application exists for the data, use it to check that the
records (and fields) pass application edits and process as expected.

• Ensure that the output file is as expected in terms of the number of
records and the contents of fields.

P A G E 4 9

Create ADABAS Files

ADAMAGIC can read text format data and reformat it so that it can be loaded into
an ADABAS database with ADAMUP. The input text file is in CSV (comma
separated, variable length field) format such as produced by Microsoft Excel. This
file must not contain any binary data. If the ADABAS record is to contain any
multiple value fields or groups (MU or PE) then the number of occurrences must
be indicated by a number preceding the multiple occurrences.

For example, if a record contains the field AT defined as 1,AT,5,P,MU and it has
three occurrences with values 15, 25 and 186, then its input text data would look
like

...,3,15,25,186,...

The occurrence number is allowed to be zero, in which case no values follow it for
that multi-value field. If an occurrence contains an empty value, the empty value
will not appear in the output record and the number of occurrences will be reduced
accordingly.

The CSV data is converted to ADABAS format according to the specifications in
the FDT contained in the primary input file (magdump or ASSOn/DATAn). Only
the ASSO part of the primary input is read.

The output files are compressed DTA, DVT and FDU files.

Text data input is signaled by the MAGPROCESS parameter having the value

magprocess = CSV(<csv-file-name>)

The csv-file-name is delimited by a right parenthesis, a blank or a semicolon.

If the run of Adamagic is to process input text data then no other functions are
permitted. IE. Adamagic can process CSV text or produce extracts and/or
compressed data, not both.

Example.

asso1 = AdamagicData\unix\ASSO1.007
asso2 = AdamagicData\unix\ASSO2.007

Chapter

5

P R O C E S S I N G T E X T D A T A

P A G E 5 0

asso3 = AdamagicData\unix\ASSO3.007
asso4 = AdamagicData\unix\ASSO4.007
data1 = AdamagicData\unix\DATA1.007
data2 = AdamagicData\unix\DATA2.007
data3 = AdamagicData\unix\DATA3.007
data4 = AdamagicData\unix\DATA4.007
magtype = UNIX
magdevice=db
magprocess = csv(AdamagicParms\csv.f15test.data)
magmodel = AdamagicData\unix\magmodel3.1.1.22unix
magdvt = csvdvt
magdta = csvdta
magfdu = csvfdu
file = 15

The above commands would cause Adamagic to read the text file
“AdamagicParms\csv.f15test.data ”, convert its fields in
accordance with the FDT for file 15 in the ASSO file(s) and create three,
compressed output files named csvdvt0015, csvdta0015 and
csvfdu0015 . The output files are suitable for input to ADABAS utilities
that can read ADAULD output.

P A G E 5 1

Adamagic exits

Four possible exits can be specified for Adamagic. These allow various aspects of
Adamagic operation to be customized to specific needs.

UEX1 This exit is called prior to writing an extract record. It may be used either
to modify the record before output, or to tell Adamagic not to output the
record at all, i.e. as a record selection exit.

UEX2 Called prior to writing a compressed dta record. It may be used either to
modify the record before output, or to tell Adamagic not to output the
record at all, i.e. as a record selection exit.

UEX3 This exit is selected by requesting a TYPE conversion of a field, to type S
(for “Special”). It is therefore a field level exit. See comments in the
sample source for restrictions on usage.

UEX4 This is a special date(time) formatting exit. It allows for the creation of
any desired output format for date(time)s that are in Natural internal
format

UEX5 If this exit is present, it is only called for an A (alpha) format field during
the conversion of an MVS input source to a Unix or Windows output
target. The exit is given the opportunity to convert the field according to
whatever rules it wishes, although sample code to use redefinitions is
supplied. If the exit processed the field then it must perform EBCDIC to
ASCII translation where required. The exit must return the field length to
indicate successful processing, or 0 to indicate it has not processed the
field. If it returns 0, ADAMAGIC will then perform standard EBCDIC to
ASCII translation for the field.

Support for redefinitions has also been incorporated into ADAMAGIC
itself - see Chapter 3 Operations section MAGX5FDT for details. If all
you need is redefinitions, then you can define a set of rules in a file and
specify the filename in MAGX5FDT, and you will have all you need.
However if you want to customise redefinition processing further then you
can change UEX5 as desired

Chapter

6

E X A M P L E S

P A G E 5 2

UEX6 If this exit is present then it will be called to perform EBCDIC to ASCII
translation. It allows customisation of the translate table used.

Installation of user exits

This distribution contains a zip file called Exits.zip which contains a copy of:

libAdamagic_exits.c the source file containing all the sample user exits

libAdamagic_exits.h the matching header file

so_<platform>

Compile scripts for each platform supported. It is advisable
to use these to compile the exits.

Both the script file and the source file contain explanatory comment. For
NT/Windows 2000, there is no script file. Instead the following files are supplied.

E X A M P L E S

P A G E 5 3

libAdamagic_exits.bpr A Borland project file

libAdamagic_exits.cpp The source (identical to the “.c” version).

libAdamagic_exits.h The matching header file

libAdamagic_exits.def A file which establishes the relationship between internal
and external exit names.

 If no Borland C++ compiler is available, then these will need to be adapted to suit
whatever is available. Any or all of the exits may be in(ex)cluded. Adamagic tests
for their presence, and calls them if they exist. Needless to say, Adamagic runs
fastest when no exit is called so, by preference, do not include unnecessary exits.

A source file containing samples of all exits is included with Adamagic. It is called
libAdamagic_exits.c(.cpp for Windows/NT). Once compiled (see below), the
resultant executable module should have a system dependent name, such as
specified in the table under DLLDIR, or at least a symbolic link of that name must
exist, which points to the real file. The “lib” prefix is required by some OS’s if the
module is to reside in the default system library for shared-objects (usually /lib).

The sample source is written in C. It may be compiled with any C compiler
however GNU gcc was found to work well. A compile script has been included,
which may be used to facilitate compilation and installation. The scripts and
parameters for the various OSs are:

Windows/NT A Borland project file (libAdamagic_exits.bpr - included) was
used rather than a script.

Solaris so_solaris with parameter 32 or 64 (depending on the machine)

Linux so_linux

HPUX so_hpux

Sample build scripts starting with 'so_' are provided that can compile and link the
user exits into a shared library. These scripts should be used with care, and should
be customised to user requirements. They should not be run as is unless checked
by a system administrator, because they will attempt to insert the shared libraries in
system library directories.

E X A M P L E S

P A G E 5 4

User exit shared libraries can be called from a user specified directory by
ADAMAGIC by using the DLLDIR environment variable as described in Chapter
3. When run in this fashion it is not necessary to create any entries in system
directories. If run in this way, then the build script can be greatly simplified. For
example the so_solaris script could be replaced by a single command:

g++ -m32 -ansi -shared -D_LARGEFILE_SOURCE -
D_FILE_OFFSET_BITS=64 -o libAdamagic_exits.so -f PI C
libAdamagic_exits.c

If in doubt it is strongly recommended that you consult a system administrator
familiar with building shared libraries.

Usage considerations

Comments within the sample source code make clear the various parameters taken
by each exit, and how they are used. Only one copy of each exit is ever loaded, so
each exit must be able to handle all the input it will receive.
Parameters passed to the exits make it possible to know for what they are currently
being called, i.e. for which group of parameters cards. UEX1 receives a.o. the
current extract name, UEX2 receives a.o. the current file number, and UEX3
receives a.o. the current field name and current extract name. When multiple
extracts are done in the one Adamagic run, UEX1 will be called for all of them.
When multiple compressed files are created in one run, UEX2 will be called for all
of them etc.
If an exit exists, it will be called, if not, Adamagic will process data normally.
Only those exits which are required should be compiled. The others should be
commented out (in preference to deleting them from the source, as they may later
be needed).

Careful use should be made of UEX3, if the file is subsequently to be compressed
and loaded into a database, as ADABAS utilities may reject changes made if the
resultant field format does not match that specified for the ADABAS field.
Adamagic copies the input field format unchanged to the output FDT when type S
is specified, so it may be necessary to manually change the FDT before using it
with Adabas, depending on what the exit has done to the field. Because U type
fields are stored as packed fields under MVS, Adamagic converts them back into
U type fields before passing them to this exit.

If UEX4 is present it is called instead of the normal formatting that would take
place for a “D type” TYPE statement (i.e. yy-mm-dd). Note that it is only called
for the formatting portion of the processing, hence can only be applied to fields
that are stored in actual internal format.

P A G E 5 5

Examples

File transfer

Transfer of ADASAV files from mainframe to Unix/Linux/NT/Windows 2000 via
FTP can cause the Block Descriptor Word (BDW) of the MVS files to be lost if
precautions are not taken to prevent it. One way to do this is to first create an
unblocked file under MVS which contains the BDW from the ADASAV file. This
is an example of the JCL which can be used to achieve this:

//DDCCA2G JOB MSGCLASS=X,CLASS=A,NOTIFY=DDCCA2
//GENER EXEC PGM=IEBGENER
//SYSUT1 DD DISP=SHR, RECFM=U,DSN=DDCCA2.ADASAV.F111240
//SYSUT2 DD DSN=DDCCA2.ADASAV.F111240U,DISP=(,CATL G),
// UNIT=SYSDA,SPACE=(CYL,(1,1),RLSE), RECFM=U
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY

Note that RECFM=U is set on both input and output files. The input file is a
regular ADASAV dump (1 or more files), with actual attribute RECFM=VB,
however in the JCL we tell it that the input file is RECFM=U. The output file may
then be transferred by FTP to the Unix/Linux/NT/Windows 2000 box without loss
of the BDW. When processed with Adamagic, MAGDEVICE=BDISK should be
specified, which tells Adamagic that we are dealing with a blocked input file.

An alternative method involves use of the IBM FTP command “MODE B” which
may either be included in the card deck of the FTP job on the mainframe, if this is
used to “put” the file, or sent to the mainframe via “QUOTE MODE B” if the
receiving machine is used to initiate the file transfer with a “get” command. A
prerequisite for the “MODE B” method to work is that the block size, of the
ADASAV dataset, not exceed 32760 bytes. When MODE B is used to transfer the
file, MAGDEVICE may be either DISK or BDISK, both work equally well.

Chapter

7

E X A M P L E S

P A G E 5 6

Compressed output

This parameter deck for Adamagic takes MVS input, and creates compressed
output ready for ADAMUP.

FILE = 11
DBID = 12
SKIPREC = 0
NUMREC = 9999999999
MAGFDU = '../output/file11.fdt'
MAGDTA = '../output/file11.dta'
MAGDVT = '../output/file11.dvt'
MAGPROCESS = FULL
MAGDEVICE = BDISK
MAGTYPE = MVS
MAGMODEL = 'model-bigendian.dta'
MAGDUMP = ../input/DDCCA2.ADASAV.F111240U

The example assumes that a directory called “output” exists at the same level as
the current directory. It will create a dta file, a dvt file, an fdt file, and an inparm
file. The latter will be created in the same directory as the fdt file.
Since the model file is “big-endian” the output will be suitable for Adamup on a
Unix machine (Intel machines are “little-endian”).
Before loading the files with ADAMUP, it may be necessary to use the fdt and
inparm files with the Adabas utility ADAFDU to create a new file in the database,
if it doesn’t already exist.

Please Note: When loading the compressed output of Adamagic, into
the database using ADAMUP, the USERISN parameter must be
specified to ADAMUP.

Extract output

Extract files provide more flexibility than compressed files, but need to
compressed with ADACMP before they can be loaded into a database. Only
extracts with FTYPE flat rdw are suitable for ADACMP. Other restrictions also
exist, e.g. normalize makes files unusable for ADACMP as do certain options on
the index command and the format command. Thus care needs to be taken that
command usage will not alter the record/field layout such as to make it
incompatible.

E X A M P L E S

P A G E 5 7

An example extract deck is:

Select specific fields from all records in the in put
file.
Rearrange the byte order of some fields.
Write the fields in the sequence they are defined in
the FDT.

magdump = ../input/DDCCA2.ADASAV.F111240U
magprocess = none
magdevice = bdisk
magtype = mvs
magmodel = 'model-bigendian.dta'
extract11 name ../output/extract11.flat
extract11 file 11
extract11 ftype flat rdw
#extract11 field ** ; this line would include all
#fields
extract11 field AA AC(1-5) AZ
extract11 field AT AH
extract11 field AI(3-4,1-2)
extract11 field AX(5-6,3-4,1-2)
extract11 field AS
#extract11 limit 4 ; limit output to 4 records
#extract11 normalise short ; either spelling
#extract11 normalize long ; works
#extract11 format cobol
#extract11 field ## ; Uncomment this line to includ e
#ISN in the output record

If the input data contains NC fields, then NULL_VALUE must be specified as a
control card for ADACMP when compressing the data e.g.:

export CMPDTA=../output/extract11.dta
export CMPDVT=../output/extract11.dvt
export CMPIN=../output/extract11.flat
export CMPFDT=../output/extract11.flat.fdt
"$ADADIR/$ADAVERS/adacmp" >
../errors/extract11.cmperror << CMPARM_END
FDT
NULL_VALUE
RECORD_STRUCTURE=ILENGTH_PREFIX
CMPARM_END

E X A M P L E S

P A G E 5 8

end of document

